pub const Crc32IsoHdlc = Crc(u32, .{
.polynomial = 0x04c11db7,
.initial = 0xffffffff,
.reflect_input = true,
.reflect_output = true,
.xor_output = 0xffffffff,
})pub const Fnv1a_64 = Fnv1a(u64, 0x100000001b3, 0xcbf29ce484222325)pub const Fnv1a_128 = Fnv1a(u128, 0x1000000000000000000013b, 0x6c62272e07bb014262b821756295c58d)SipHash function with 64-bit output.
Recommended parameters are:
SipHash is not a traditional hash function. If the input includes untrusted content, a secret key is absolutely necessary. And due to its small output size, collisions in SipHash64 can be found with an exhaustive search.
c_rounds: usized_rounds: usizepub const Error = error{}pub fn init(key: *const [key_length]u8) SelfInitialize a state for a SipHash function
key: *const [key_length]u8pub fn init(key: *const [key_length]u8) Self {
return Self{
.state = State.init(key),
.buf = undefined,
.buf_len = 0,
};
}pub fn update(self: *Self, b: []const u8) voidAdd data to the state
self: *Selfb: []const u8pub fn update(self: *Self, b: []const u8) void {
var off: usize = 0;
if (self.buf_len != 0 and self.buf_len + b.len >= 8) {
off += 8 - self.buf_len;
@memcpy(self.buf[self.buf_len..][0..off], b[0..off]);
self.state.update(self.buf[0..]);
self.buf_len = 0;
}
const remain_len = b.len - off;
const aligned_len = remain_len - (remain_len % 8);
self.state.update(b[off .. off + aligned_len]);
const b_slice = b[off + aligned_len ..];
@memcpy(self.buf[self.buf_len..][0..b_slice.len], b_slice);
self.buf_len += @as(u8, @intCast(b_slice.len));
}pub fn peek(self: Self) [mac_length]u8self: Selfpub fn peek(self: Self) [mac_length]u8 {
var copy = self;
return copy.finalResult();
}pub fn final(self: *Self, out: *[mac_length]u8) voidReturn an authentication tag for the current state
Assumes out is less than or equal to mac_length.
self: *Selfout: *[mac_length]u8pub fn final(self: *Self, out: *[mac_length]u8) void {
mem.writeInt(T, out, self.state.final(self.buf[0..self.buf_len]), .little);
}pub fn finalResult(self: *Self) [mac_length]u8self: *Selfpub fn finalResult(self: *Self) [mac_length]u8 {
var result: [mac_length]u8 = undefined;
self.final(&result);
return result;
}pub fn create(out: *[mac_length]u8, msg: []const u8, key: *const [key_length]u8) voidReturn an authentication tag for a message and a key
pub fn create(out: *[mac_length]u8, msg: []const u8, key: *const [key_length]u8) void {
var ctx = Self.init(key);
ctx.update(msg);
ctx.final(out);
}pub fn finalInt(self: *Self) TReturn an authentication tag for the current state, as an integer
self: *Selfpub fn finalInt(self: *Self) T {
return self.state.final(self.buf[0..self.buf_len]);
}pub fn toInt(msg: []const u8, key: *const [key_length]u8) TReturn an authentication tag for a message and a key, as an integer
msg: []const u8key: *const [key_length]u8pub fn toInt(msg: []const u8, key: *const [key_length]u8) T {
return State.hash(msg, key);
}pub fn SipHash64(comptime c_rounds: usize, comptime d_rounds: usize) type {
return SipHash(u64, c_rounds, d_rounds);
}SipHash function with 128-bit output.
Recommended parameters are:
SipHash is not a traditional hash function. If the input includes untrusted content, a secret key is absolutely necessary.
c_rounds: usized_rounds: usizepub const Error = error{}pub fn init(key: *const [key_length]u8) SelfInitialize a state for a SipHash function
key: *const [key_length]u8pub fn init(key: *const [key_length]u8) Self {
return Self{
.state = State.init(key),
.buf = undefined,
.buf_len = 0,
};
}pub fn update(self: *Self, b: []const u8) voidAdd data to the state
self: *Selfb: []const u8pub fn update(self: *Self, b: []const u8) void {
var off: usize = 0;
if (self.buf_len != 0 and self.buf_len + b.len >= 8) {
off += 8 - self.buf_len;
@memcpy(self.buf[self.buf_len..][0..off], b[0..off]);
self.state.update(self.buf[0..]);
self.buf_len = 0;
}
const remain_len = b.len - off;
const aligned_len = remain_len - (remain_len % 8);
self.state.update(b[off .. off + aligned_len]);
const b_slice = b[off + aligned_len ..];
@memcpy(self.buf[self.buf_len..][0..b_slice.len], b_slice);
self.buf_len += @as(u8, @intCast(b_slice.len));
}pub fn peek(self: Self) [mac_length]u8self: Selfpub fn peek(self: Self) [mac_length]u8 {
var copy = self;
return copy.finalResult();
}pub fn final(self: *Self, out: *[mac_length]u8) voidReturn an authentication tag for the current state
Assumes out is less than or equal to mac_length.
self: *Selfout: *[mac_length]u8pub fn final(self: *Self, out: *[mac_length]u8) void {
mem.writeInt(T, out, self.state.final(self.buf[0..self.buf_len]), .little);
}pub fn finalResult(self: *Self) [mac_length]u8self: *Selfpub fn finalResult(self: *Self) [mac_length]u8 {
var result: [mac_length]u8 = undefined;
self.final(&result);
return result;
}pub fn create(out: *[mac_length]u8, msg: []const u8, key: *const [key_length]u8) voidReturn an authentication tag for a message and a key
pub fn create(out: *[mac_length]u8, msg: []const u8, key: *const [key_length]u8) void {
var ctx = Self.init(key);
ctx.update(msg);
ctx.final(out);
}pub fn finalInt(self: *Self) TReturn an authentication tag for the current state, as an integer
self: *Selfpub fn finalInt(self: *Self) T {
return self.state.final(self.buf[0..self.buf_len]);
}pub fn toInt(msg: []const u8, key: *const [key_length]u8) TReturn an authentication tag for a message and a key, as an integer
msg: []const u8key: *const [key_length]u8pub fn toInt(msg: []const u8, key: *const [key_length]u8) T {
return State.hash(msg, key);
}pub fn SipHash128(comptime c_rounds: usize, comptime d_rounds: usize) type {
return SipHash(u128, c_rounds, d_rounds);
}pub fn autoHash(hasher: anytype, key: anytype) voidProvides generic hashing for any eligible type.
Only hashes key itself, pointers are not followed.
Slices as well as unions and structs containing slices are rejected to avoid
ambiguity on the user's intention.
pub fn autoHash(hasher: anytype, key: anytype) void {
const Key = @TypeOf(key);
if (comptime typeContainsSlice(Key)) {
@compileError("std.hash.autoHash does not allow slices as well as unions and structs containing slices here (" ++ @typeName(Key) ++
") because the intent is unclear. Consider using std.hash.autoHashStrat or providing your own hash function instead.");
}
hash(hasher, key, .Shallow);
}pub fn hash(hasher: anytype, key: anytype, comptime strat: HashStrategy) voidProvides generic hashing for any eligible type. Strategy is provided to determine if pointers should be followed or not.
strat: HashStrategypub fn hash(hasher: anytype, key: anytype, comptime strat: HashStrategy) void {
const Key = @TypeOf(key);
const Hasher = switch (@typeInfo(@TypeOf(hasher))) {
.pointer => |ptr| ptr.child,
else => @TypeOf(hasher),
};
if (strat == .Shallow and std.meta.hasUniqueRepresentation(Key)) {
@call(.always_inline, Hasher.update, .{ hasher, mem.asBytes(&key) });
return;
}
switch (@typeInfo(Key)) {
.noreturn,
.@"opaque",
.undefined,
.null,
.comptime_float,
.comptime_int,
.type,
.enum_literal,
.frame,
.float,
=> @compileError("unable to hash type " ++ @typeName(Key)),
.void => return,
// Help the optimizer see that hashing an int is easy by inlining!
// TODO Check if the situation is better after #561 is resolved.
.int => |int| switch (int.signedness) {
.signed => hash(hasher, @as(@Type(.{ .int = .{
.bits = int.bits,
.signedness = .unsigned,
} }), @bitCast(key)), strat),
.unsigned => {
if (std.meta.hasUniqueRepresentation(Key)) {
@call(.always_inline, Hasher.update, .{ hasher, std.mem.asBytes(&key) });
} else {
// Take only the part containing the key value, the remaining
// bytes are undefined and must not be hashed!
const byte_size = comptime std.math.divCeil(comptime_int, @bitSizeOf(Key), 8) catch unreachable;
@call(.always_inline, Hasher.update, .{ hasher, std.mem.asBytes(&key)[0..byte_size] });
}
},
},
.bool => hash(hasher, @intFromBool(key), strat),
.@"enum" => hash(hasher, @intFromEnum(key), strat),
.error_set => hash(hasher, @intFromError(key), strat),
.@"anyframe", .@"fn" => hash(hasher, @intFromPtr(key), strat),
.pointer => @call(.always_inline, hashPointer, .{ hasher, key, strat }),
.optional => if (key) |k| hash(hasher, k, strat),
.array => hashArray(hasher, key, strat),
.vector => |info| {
if (std.meta.hasUniqueRepresentation(Key)) {
hasher.update(mem.asBytes(&key));
} else {
comptime var i = 0;
inline while (i < info.len) : (i += 1) {
hash(hasher, key[i], strat);
}
}
},
.@"struct" => |info| {
inline for (info.fields) |field| {
// We reuse the hash of the previous field as the seed for the
// next one so that they're dependant.
hash(hasher, @field(key, field.name), strat);
}
},
.@"union" => |info| {
if (info.tag_type) |tag_type| {
const tag = std.meta.activeTag(key);
hash(hasher, tag, strat);
inline for (info.fields) |field| {
if (@field(tag_type, field.name) == tag) {
if (field.type != void) {
hash(hasher, @field(key, field.name), strat);
}
// TODO use a labelled break when it does not crash the compiler. cf #2908
// break :blk;
return;
}
}
unreachable;
} else @compileError("cannot hash untagged union type: " ++ @typeName(Key) ++ ", provide your own hash function");
},
.error_union => blk: {
const payload = key catch |err| {
hash(hasher, err, strat);
break :blk;
};
hash(hasher, payload, strat);
},
}
}pub fn int(input: anytype) @TypeOf(input)Integer-to-integer hashing for bit widths <= 256.
test int {
const expectEqual = @import("std").testing.expectEqual;
try expectEqual(0x1, int(@as(u1, 1)));
try expectEqual(0x3, int(@as(u2, 1)));
try expectEqual(0x4, int(@as(u3, 1)));
try expectEqual(0xD6, int(@as(u8, 1)));
try expectEqual(0x2880, int(@as(u16, 1)));
try expectEqual(0x2880, int(@as(i16, 1)));
try expectEqual(0x838380, int(@as(u24, 1)));
try expectEqual(0x42741D6, int(@as(u32, 1)));
try expectEqual(0x42741D6, int(@as(i32, 1)));
try expectEqual(0x71894DE00D9981F, int(@as(u64, 1)));
try expectEqual(0x71894DE00D9981F, int(@as(i64, 1)));
}pub fn int(input: anytype) @TypeOf(input) {
// This function is only intended for integer types
const info = @typeInfo(@TypeOf(input)).int;
const bits = info.bits;
// Convert input to unsigned integer (easier to deal with)
const Uint = @Type(.{ .int = .{ .bits = bits, .signedness = .unsigned } });
const u_input: Uint = @bitCast(input);
if (bits > 256) @compileError("bit widths > 256 are unsupported, use std.hash.autoHash functionality.");
// For bit widths that don't have a dedicated function, use a heuristic
// construction with a multiplier suited to diffusion -
// a mod 2^bits where a^2 - 46 * a + 1 = 0 mod 2^(bits + 4),
// on Mathematica: bits = 256; BaseForm[Solve[1 - 46 a + a^2 == 0, a, Modulus -> 2^(bits + 4)][[-1]][[1]][[2]], 16]
const mult: Uint = @truncate(0xfac2e27ed2036860a062b5f264d80a512b00aa459b448bf1eca24d41c96f59e5b);
// The bit width of the input integer determines how to hash it
const output = switch (bits) {
0...2 => u_input *% mult,
16 => uint16(u_input),
32 => uint32(u_input),
64 => uint64(u_input),
else => blk: {
var x: Uint = u_input;
inline for (0..4) |_| {
x ^= x >> (bits / 2);
x *%= mult;
}
break :blk x;
},
};
return @bitCast(output);
}pub fn uint32(input: u32) u32DEPRECATED: use std.hash.int() Source: https://github.com/skeeto/hash-prospector
input: u32pub fn uint32(input: u32) u32 {
var x: u32 = input;
x = (x ^ (x >> 17)) *% 0xed5ad4bb;
x = (x ^ (x >> 11)) *% 0xac4c1b51;
x = (x ^ (x >> 15)) *% 0x31848bab;
x = x ^ (x >> 14);
return x;
}const adler = @import("hash/adler.zig");
pub const Adler32 = adler.Adler32;
const auto_hash = @import("hash/auto_hash.zig");
pub const autoHash = auto_hash.autoHash;
pub const autoHashStrat = auto_hash.hash;
pub const Strategy = auto_hash.HashStrategy;
// pub for polynomials + generic crc32 construction
pub const crc = @import("hash/crc.zig");
pub const Crc32 = crc.Crc32;
const fnv = @import("hash/fnv.zig");
pub const Fnv1a_32 = fnv.Fnv1a_32;
pub const Fnv1a_64 = fnv.Fnv1a_64;
pub const Fnv1a_128 = fnv.Fnv1a_128;
const siphash = @import("crypto/siphash.zig");
pub const SipHash64 = siphash.SipHash64;
pub const SipHash128 = siphash.SipHash128;
pub const murmur = @import("hash/murmur.zig");
pub const Murmur2_32 = murmur.Murmur2_32;
pub const Murmur2_64 = murmur.Murmur2_64;
pub const Murmur3_32 = murmur.Murmur3_32;
pub const cityhash = @import("hash/cityhash.zig");
pub const CityHash32 = cityhash.CityHash32;
pub const CityHash64 = cityhash.CityHash64;
const wyhash = @import("hash/wyhash.zig");
pub const Wyhash = wyhash.Wyhash;
pub const RapidHash = @import("hash/RapidHash.zig");
const xxhash = @import("hash/xxhash.zig");
pub const XxHash3 = xxhash.XxHash3;
pub const XxHash64 = xxhash.XxHash64;
pub const XxHash32 = xxhash.XxHash32;
/// Integer-to-integer hashing for bit widths <= 256.
pub fn int(input: anytype) @TypeOf(input) {
// This function is only intended for integer types
const info = @typeInfo(@TypeOf(input)).int;
const bits = info.bits;
// Convert input to unsigned integer (easier to deal with)
const Uint = @Type(.{ .int = .{ .bits = bits, .signedness = .unsigned } });
const u_input: Uint = @bitCast(input);
if (bits > 256) @compileError("bit widths > 256 are unsupported, use std.hash.autoHash functionality.");
// For bit widths that don't have a dedicated function, use a heuristic
// construction with a multiplier suited to diffusion -
// a mod 2^bits where a^2 - 46 * a + 1 = 0 mod 2^(bits + 4),
// on Mathematica: bits = 256; BaseForm[Solve[1 - 46 a + a^2 == 0, a, Modulus -> 2^(bits + 4)][[-1]][[1]][[2]], 16]
const mult: Uint = @truncate(0xfac2e27ed2036860a062b5f264d80a512b00aa459b448bf1eca24d41c96f59e5b);
// The bit width of the input integer determines how to hash it
const output = switch (bits) {
0...2 => u_input *% mult,
16 => uint16(u_input),
32 => uint32(u_input),
64 => uint64(u_input),
else => blk: {
var x: Uint = u_input;
inline for (0..4) |_| {
x ^= x >> (bits / 2);
x *%= mult;
}
break :blk x;
},
};
return @bitCast(output);
}
/// Source: https://github.com/skeeto/hash-prospector
fn uint16(input: u16) u16 {
var x: u16 = input;
x = (x ^ (x >> 7)) *% 0x2993;
x = (x ^ (x >> 5)) *% 0xe877;
x = (x ^ (x >> 9)) *% 0x0235;
x = x ^ (x >> 10);
return x;
}
/// DEPRECATED: use std.hash.int()
/// Source: https://github.com/skeeto/hash-prospector
pub fn uint32(input: u32) u32 {
var x: u32 = input;
x = (x ^ (x >> 17)) *% 0xed5ad4bb;
x = (x ^ (x >> 11)) *% 0xac4c1b51;
x = (x ^ (x >> 15)) *% 0x31848bab;
x = x ^ (x >> 14);
return x;
}
/// Source: https://github.com/jonmaiga/mx3
fn uint64(input: u64) u64 {
var x: u64 = input;
const c = 0xbea225f9eb34556d;
x = (x ^ (x >> 32)) *% c;
x = (x ^ (x >> 29)) *% c;
x = (x ^ (x >> 32)) *% c;
x = x ^ (x >> 29);
return x;
}
test int {
const expectEqual = @import("std").testing.expectEqual;
try expectEqual(0x1, int(@as(u1, 1)));
try expectEqual(0x3, int(@as(u2, 1)));
try expectEqual(0x4, int(@as(u3, 1)));
try expectEqual(0xD6, int(@as(u8, 1)));
try expectEqual(0x2880, int(@as(u16, 1)));
try expectEqual(0x2880, int(@as(i16, 1)));
try expectEqual(0x838380, int(@as(u24, 1)));
try expectEqual(0x42741D6, int(@as(u32, 1)));
try expectEqual(0x42741D6, int(@as(i32, 1)));
try expectEqual(0x71894DE00D9981F, int(@as(u64, 1)));
try expectEqual(0x71894DE00D9981F, int(@as(i64, 1)));
}
test {
_ = adler;
_ = auto_hash;
_ = crc;
_ = fnv;
_ = murmur;
_ = cityhash;
_ = wyhash;
_ = xxhash;
}