pub const MemCheckClientRequest = @compileError("std.valgrind.memcheck.MemCheckClientRequest renamed to std.valgrind.memcheck.ClientRequest")pub fn makeMemNoAccess(qzz: []const u8) voidMark memory at qzz.ptr as unaddressable for qzz.len bytes.
qzz: []const u8pub fn makeMemNoAccess(qzz: []const u8) void {
_ = doClientRequestExpr(0, // default return
.MakeMemNoAccess, @intFromPtr(qzz.ptr), qzz.len, 0, 0, 0);
}pub fn makeMemUndefined(qzz: []const u8) voidMark memory at qzz.ptr as addressable but undefined for qzz.len bytes.
qzz: []const u8pub fn makeMemUndefined(qzz: []const u8) void {
_ = doClientRequestExpr(0, // default return
.MakeMemUndefined, @intFromPtr(qzz.ptr), qzz.len, 0, 0, 0);
}pub fn makeMemDefined(qzz: []const u8) voidMark memory at qzz.ptr as addressable and defined or qzz.len bytes.
qzz: []const u8pub fn makeMemDefined(qzz: []const u8) void {
_ = doClientRequestExpr(0, // default return
.MakeMemDefined, @intFromPtr(qzz.ptr), qzz.len, 0, 0, 0);
}pub fn makeMemDefinedIfAddressable(qzz: []const u8) voidSimilar to makeMemDefined except that addressability is not altered: bytes which are addressable are marked as defined, but those which are not addressable are left unchanged.
qzz: []const u8pub fn makeMemDefinedIfAddressable(qzz: []const u8) void {
_ = doClientRequestExpr(0, // default return
.MakeMemDefinedIfAddressable, @intFromPtr(qzz.ptr), qzz.len, 0, 0, 0);
}pub fn createBlock(qzz: []const u8, desc: [*:0]const u8) usizeCreate a block-description handle. The description is an ascii string which is included in any messages pertaining to addresses within the specified memory range. Has no other effect on the properties of the memory range.
qzz: []const u8desc: [*:0]const u8pub fn createBlock(qzz: []const u8, desc: [*:0]const u8) usize {
return doClientRequestExpr(0, // default return
.CreateBlock, @intFromPtr(qzz.ptr), qzz.len, @intFromPtr(desc), 0, 0);
}pub fn discard(blkindex: usize) boolDiscard a block-description-handle. Returns 1 for an invalid handle, 0 for a valid handle.
blkindex: usizepub fn discard(blkindex: usize) bool {
return doClientRequestExpr(0, // default return
.Discard, 0, blkindex, 0, 0, 0) != 0;
}pub fn checkMemIsAddressable(qzz: []const u8) usizeCheck that memory at qzz.ptr is addressable for qzz.len bytes. If suitable addressability is not established, Valgrind prints an error message and returns the address of the first offending byte. Otherwise it returns zero.
qzz: []const u8pub fn checkMemIsAddressable(qzz: []const u8) usize {
return doClientRequestExpr(0, .CheckMemIsAddressable, @intFromPtr(qzz.ptr), qzz.len, 0, 0, 0);
}pub fn checkMemIsDefined(qzz: []const u8) usizeCheck that memory at qzz.ptr is addressable and defined for qzz.len bytes. If suitable addressability and definedness are not established, Valgrind prints an error message and returns the address of the first offending byte. Otherwise it returns zero.
qzz: []const u8pub fn checkMemIsDefined(qzz: []const u8) usize {
return doClientRequestExpr(0, .CheckMemIsDefined, @intFromPtr(qzz.ptr), qzz.len, 0, 0, 0);
}pub fn doLeakCheck() voidDo a full memory leak check (like --leak-check=full) mid-execution.
pub fn doLeakCheck() void {
doClientRequestStmt(.DoLeakCheck, 0, 0, 0, 0, 0);
}pub fn doAddedLeakCheck() voidSame as doLeakCheck() but only showing the entries for which there was an increase in leaked bytes or leaked nr of blocks since the previous leak search.
pub fn doAddedLeakCheck() void {
doClientRequestStmt(.DoLeakCheck, 0, 1, 0, 0, 0);
}pub fn doChangedLeakCheck() voidSame as doAddedLeakCheck() but showing entries with increased or decreased leaked bytes/blocks since previous leak search.
pub fn doChangedLeakCheck() void {
doClientRequestStmt(.DoLeakCheck, 0, 2, 0, 0, 0);
}pub fn doQuickLeakCheck() voidDo a summary memory leak check (like --leak-check=summary) mid-execution.
pub fn doQuickLeakCheck() void {
doClientRequestStmt(.DoLeakCheck, 1, 0, 0, 0, 0);
}pub fn countLeaks() CountResulttest countLeaks {
try testing.expectEqual(
@as(CountResult, .{
.leaked = 0,
.dubious = 0,
.reachable = 0,
.suppressed = 0,
}),
countLeaks(),
);
}pub fn countLeaks() CountResult {
var res: CountResult = .{
.leaked = 0,
.dubious = 0,
.reachable = 0,
.suppressed = 0,
};
doClientRequestStmt(
.CountLeaks,
@intFromPtr(&res.leaked),
@intFromPtr(&res.dubious),
@intFromPtr(&res.reachable),
@intFromPtr(&res.suppressed),
0,
);
return res;
}pub fn countLeakBlocks() CountResulttest countLeakBlocks {
try testing.expectEqual(
@as(CountResult, .{
.leaked = 0,
.dubious = 0,
.reachable = 0,
.suppressed = 0,
}),
countLeakBlocks(),
);
}pub fn countLeakBlocks() CountResult {
var res: CountResult = .{
.leaked = 0,
.dubious = 0,
.reachable = 0,
.suppressed = 0,
};
doClientRequestStmt(
.CountLeakBlocks,
@intFromPtr(&res.leaked),
@intFromPtr(&res.dubious),
@intFromPtr(&res.reachable),
@intFromPtr(&res.suppressed),
0,
);
return res;
}pub fn getVbits(zza: []u8, zzvbits: []u8) u2Get the validity data for addresses zza and copy it into the provided zzvbits array. Return values: 0 if not running on valgrind 1 success 2 [previously indicated unaligned arrays; these are now allowed] 3 if any parts of zzsrc/zzvbits are not addressable. The metadata is not copied in cases 0, 2 or 3 so it should be impossible to segfault your system by using this call.
zza: []u8zzvbits: []u8pub fn getVbits(zza: []u8, zzvbits: []u8) u2 {
std.debug.assert(zzvbits.len >= zza.len / 8);
return @as(u2, @intCast(doClientRequestExpr(0, .GetVbits, @intFromPtr(zza.ptr), @intFromPtr(zzvbits.ptr), zza.len, 0, 0)));
}pub fn setVbits(zzvbits: []u8, zza: []u8) u2Set the validity data for addresses zza, copying it from the provided zzvbits array. Return values: 0 if not running on valgrind 1 success 2 [previously indicated unaligned arrays; these are now allowed] 3 if any parts of zza/zzvbits are not addressable. The metadata is not copied in cases 0, 2 or 3 so it should be impossible to segfault your system by using this call.
zzvbits: []u8zza: []u8pub fn setVbits(zzvbits: []u8, zza: []u8) u2 {
std.debug.assert(zzvbits.len >= zza.len / 8);
return @as(u2, @intCast(doClientRequestExpr(0, .SetVbits, @intFromPtr(zza.ptr), @intFromPtr(zzvbits.ptr), zza.len, 0, 0)));
}pub fn disableAddrErrorReportingInRange(qzz: []u8) usizeDisable and re-enable reporting of addressing errors in the specified address range.
qzz: []u8pub fn disableAddrErrorReportingInRange(qzz: []u8) usize {
return doClientRequestExpr(0, // default return
.DisableAddrErrorReportingInRange, @intFromPtr(qzz.ptr), qzz.len, 0, 0, 0);
}pub fn enableAddrErrorReportingInRange(qzz: []u8) usizeqzz: []u8pub fn enableAddrErrorReportingInRange(qzz: []u8) usize {
return doClientRequestExpr(0, // default return
.EnableAddrErrorReportingInRange, @intFromPtr(qzz.ptr), qzz.len, 0, 0, 0);
}const std = @import("../std.zig");
const testing = std.testing;
const valgrind = std.valgrind;
pub const ClientRequest = enum(usize) {
MakeMemNoAccess = valgrind.ToolBase("MC".*),
MakeMemUndefined,
MakeMemDefined,
Discard,
CheckMemIsAddressable,
CheckMemIsDefined,
DoLeakCheck,
CountLeaks,
GetVbits,
SetVbits,
CreateBlock,
MakeMemDefinedIfAddressable,
CountLeakBlocks,
EnableAddrErrorReportingInRange,
DisableAddrErrorReportingInRange,
};
pub const MemCheckClientRequest = @compileError("std.valgrind.memcheck.MemCheckClientRequest renamed to std.valgrind.memcheck.ClientRequest");
fn doClientRequestExpr(default: usize, request: ClientRequest, a1: usize, a2: usize, a3: usize, a4: usize, a5: usize) usize {
return valgrind.doClientRequest(default, @as(usize, @intCast(@intFromEnum(request))), a1, a2, a3, a4, a5);
}
fn doClientRequestStmt(request: ClientRequest, a1: usize, a2: usize, a3: usize, a4: usize, a5: usize) void {
_ = doClientRequestExpr(0, request, a1, a2, a3, a4, a5);
}
/// Mark memory at qzz.ptr as unaddressable for qzz.len bytes.
pub fn makeMemNoAccess(qzz: []const u8) void {
_ = doClientRequestExpr(0, // default return
.MakeMemNoAccess, @intFromPtr(qzz.ptr), qzz.len, 0, 0, 0);
}
/// Mark memory at qzz.ptr as addressable but undefined for qzz.len bytes.
pub fn makeMemUndefined(qzz: []const u8) void {
_ = doClientRequestExpr(0, // default return
.MakeMemUndefined, @intFromPtr(qzz.ptr), qzz.len, 0, 0, 0);
}
/// Mark memory at qzz.ptr as addressable and defined or qzz.len bytes.
pub fn makeMemDefined(qzz: []const u8) void {
_ = doClientRequestExpr(0, // default return
.MakeMemDefined, @intFromPtr(qzz.ptr), qzz.len, 0, 0, 0);
}
/// Similar to makeMemDefined except that addressability is
/// not altered: bytes which are addressable are marked as defined,
/// but those which are not addressable are left unchanged.
pub fn makeMemDefinedIfAddressable(qzz: []const u8) void {
_ = doClientRequestExpr(0, // default return
.MakeMemDefinedIfAddressable, @intFromPtr(qzz.ptr), qzz.len, 0, 0, 0);
}
/// Create a block-description handle. The description is an ascii
/// string which is included in any messages pertaining to addresses
/// within the specified memory range. Has no other effect on the
/// properties of the memory range.
pub fn createBlock(qzz: []const u8, desc: [*:0]const u8) usize {
return doClientRequestExpr(0, // default return
.CreateBlock, @intFromPtr(qzz.ptr), qzz.len, @intFromPtr(desc), 0, 0);
}
/// Discard a block-description-handle. Returns 1 for an
/// invalid handle, 0 for a valid handle.
pub fn discard(blkindex: usize) bool {
return doClientRequestExpr(0, // default return
.Discard, 0, blkindex, 0, 0, 0) != 0;
}
/// Check that memory at qzz.ptr is addressable for qzz.len bytes.
/// If suitable addressability is not established, Valgrind prints an
/// error message and returns the address of the first offending byte.
/// Otherwise it returns zero.
pub fn checkMemIsAddressable(qzz: []const u8) usize {
return doClientRequestExpr(0, .CheckMemIsAddressable, @intFromPtr(qzz.ptr), qzz.len, 0, 0, 0);
}
/// Check that memory at qzz.ptr is addressable and defined for
/// qzz.len bytes. If suitable addressability and definedness are not
/// established, Valgrind prints an error message and returns the
/// address of the first offending byte. Otherwise it returns zero.
pub fn checkMemIsDefined(qzz: []const u8) usize {
return doClientRequestExpr(0, .CheckMemIsDefined, @intFromPtr(qzz.ptr), qzz.len, 0, 0, 0);
}
/// Do a full memory leak check (like --leak-check=full) mid-execution.
pub fn doLeakCheck() void {
doClientRequestStmt(.DoLeakCheck, 0, 0, 0, 0, 0);
}
/// Same as doLeakCheck() but only showing the entries for
/// which there was an increase in leaked bytes or leaked nr of blocks
/// since the previous leak search.
pub fn doAddedLeakCheck() void {
doClientRequestStmt(.DoLeakCheck, 0, 1, 0, 0, 0);
}
/// Same as doAddedLeakCheck() but showing entries with
/// increased or decreased leaked bytes/blocks since previous leak
/// search.
pub fn doChangedLeakCheck() void {
doClientRequestStmt(.DoLeakCheck, 0, 2, 0, 0, 0);
}
/// Do a summary memory leak check (like --leak-check=summary) mid-execution.
pub fn doQuickLeakCheck() void {
doClientRequestStmt(.DoLeakCheck, 1, 0, 0, 0, 0);
}
/// Return number of leaked, dubious, reachable and suppressed bytes found by
/// all previous leak checks.
const CountResult = struct {
leaked: usize,
dubious: usize,
reachable: usize,
suppressed: usize,
};
pub fn countLeaks() CountResult {
var res: CountResult = .{
.leaked = 0,
.dubious = 0,
.reachable = 0,
.suppressed = 0,
};
doClientRequestStmt(
.CountLeaks,
@intFromPtr(&res.leaked),
@intFromPtr(&res.dubious),
@intFromPtr(&res.reachable),
@intFromPtr(&res.suppressed),
0,
);
return res;
}
test countLeaks {
try testing.expectEqual(
@as(CountResult, .{
.leaked = 0,
.dubious = 0,
.reachable = 0,
.suppressed = 0,
}),
countLeaks(),
);
}
pub fn countLeakBlocks() CountResult {
var res: CountResult = .{
.leaked = 0,
.dubious = 0,
.reachable = 0,
.suppressed = 0,
};
doClientRequestStmt(
.CountLeakBlocks,
@intFromPtr(&res.leaked),
@intFromPtr(&res.dubious),
@intFromPtr(&res.reachable),
@intFromPtr(&res.suppressed),
0,
);
return res;
}
test countLeakBlocks {
try testing.expectEqual(
@as(CountResult, .{
.leaked = 0,
.dubious = 0,
.reachable = 0,
.suppressed = 0,
}),
countLeakBlocks(),
);
}
/// Get the validity data for addresses zza and copy it
/// into the provided zzvbits array. Return values:
/// 0 if not running on valgrind
/// 1 success
/// 2 [previously indicated unaligned arrays; these are now allowed]
/// 3 if any parts of zzsrc/zzvbits are not addressable.
/// The metadata is not copied in cases 0, 2 or 3 so it should be
/// impossible to segfault your system by using this call.
pub fn getVbits(zza: []u8, zzvbits: []u8) u2 {
std.debug.assert(zzvbits.len >= zza.len / 8);
return @as(u2, @intCast(doClientRequestExpr(0, .GetVbits, @intFromPtr(zza.ptr), @intFromPtr(zzvbits.ptr), zza.len, 0, 0)));
}
/// Set the validity data for addresses zza, copying it
/// from the provided zzvbits array. Return values:
/// 0 if not running on valgrind
/// 1 success
/// 2 [previously indicated unaligned arrays; these are now allowed]
/// 3 if any parts of zza/zzvbits are not addressable.
/// The metadata is not copied in cases 0, 2 or 3 so it should be
/// impossible to segfault your system by using this call.
pub fn setVbits(zzvbits: []u8, zza: []u8) u2 {
std.debug.assert(zzvbits.len >= zza.len / 8);
return @as(u2, @intCast(doClientRequestExpr(0, .SetVbits, @intFromPtr(zza.ptr), @intFromPtr(zzvbits.ptr), zza.len, 0, 0)));
}
/// Disable and re-enable reporting of addressing errors in the
/// specified address range.
pub fn disableAddrErrorReportingInRange(qzz: []u8) usize {
return doClientRequestExpr(0, // default return
.DisableAddrErrorReportingInRange, @intFromPtr(qzz.ptr), qzz.len, 0, 0, 0);
}
pub fn enableAddrErrorReportingInRange(qzz: []u8) usize {
return doClientRequestExpr(0, // default return
.EnableAddrErrorReportingInRange, @intFromPtr(qzz.ptr), qzz.len, 0, 0, 0);
}