structstd.crypto.sha3[src]

Types

TypeSha3_224[src]

Source Code

Source code
pub const Sha3_224 = Keccak(1600, 224, 0x06, 24)

TypeSha3_256[src]

Source Code

Source code
pub const Sha3_256 = Keccak(1600, 256, 0x06, 24)

TypeSha3_384[src]

Source Code

Source code
pub const Sha3_384 = Keccak(1600, 384, 0x06, 24)

TypeSha3_512[src]

Source Code

Source code
pub const Sha3_512 = Keccak(1600, 512, 0x06, 24)

TypeKeccak256[src]

Source Code

Source code
pub const Keccak256 = Keccak(1600, 256, 0x01, 24)

TypeKeccak512[src]

Source Code

Source code
pub const Keccak512 = Keccak(1600, 512, 0x01, 24)

TypeShake128[src]

Source Code

Source code
pub const Shake128 = Shake(128)

TypeShake256[src]

Source Code

Source code
pub const Shake256 = Shake(256)

TypeCShake128[src]

Source Code

Source code
pub const CShake128 = CShake(128, null)

TypeCShake256[src]

Source Code

Source code
pub const CShake256 = CShake(256, null)

TypeKMac128[src]

Source Code

Source code
pub const KMac128 = KMac(128)

TypeKMac256[src]

Source Code

Source code
pub const KMac256 = KMac(256)

TypeTupleHash128[src]

Source Code

Source code
pub const TupleHash128 = TupleHash(128)

TypeTupleHash256[src]

Source Code

Source code
pub const TupleHash256 = TupleHash(256)

Type FunctionTurboShake128[src]

TurboSHAKE128 is a XOF (a secure hash function with a variable output length), with a 128 bit security level. It is based on the same permutation as SHA3 and SHAKE128, but which much higher performance. The delimiter is 0x1f by default, but can be changed for context-separation. For a protocol that uses both KangarooTwelve and TurboSHAKE128, it is recommended to avoid using 0x06, 0x07 or 0x0b for the delimiter.

Parameters

delim: ?u7

Fields

st: State
buf: [State.rate]u8 = undefined
offset: usize = 0
padded: bool = false

Source Code

Source code
pub fn TurboShake128(delim: ?u7) type {
    return TurboShake(128, delim);
}

Type FunctionTurboShake256[src]

TurboSHAKE256 is a XOF (a secure hash function with a variable output length), with a 256 bit security level. It is based on the same permutation as SHA3 and SHAKE256, but which much higher performance. The delimiter is 0x1f by default, but can be changed for context-separation.

Parameters

delim: ?u7

Fields

st: State
buf: [State.rate]u8 = undefined
offset: usize = 0
padded: bool = false

Source Code

Source code
pub fn TurboShake256(comptime delim: ?u7) type {
    return TurboShake(256, delim);
}

Type FunctionKeccak[src]

A generic Keccak hash function.

Parameters

f: u11
output_bits: u11
default_delim: u8
rounds: u5

Types

TypeWriter[src]

Source Code

Source code
pub const Writer = std.io.Writer(*Self, Error, write)

Fields

st: State

Values

Constantdigest_length[src]

The output length, in bytes.

Source Code

Source code
pub const digest_length = std.math.divCeil(comptime_int, output_bits, 8) catch unreachable

Constantblock_length[src]

The block length, or rate, in bytes.

Source Code

Source code
pub const block_length = State.rate

Error Sets

Error SetError[src]

Source Code

Source code
pub const Error = error{}

Functions

Functioninit[src]

pub fn init(options: Options) Self

Initialize a Keccak hash function.

Parameters

options: Options

Source Code

Source code
pub fn init(options: Options) Self {
    return Self{ .st = .{ .delim = options.delim } };
}

Functionhash[src]

pub fn hash(bytes: []const u8, out: *[digest_length]u8, options: Options) void

Hash a slice of bytes.

Parameters

bytes: []const u8
out: *[digest_length]u8
options: Options

Source Code

Source code
pub fn hash(bytes: []const u8, out: *[digest_length]u8, options: Options) void {
    var st = Self.init(options);
    st.update(bytes);
    st.final(out);
}

Functionupdate[src]

pub fn update(self: *Self, bytes: []const u8) void

Absorb a slice of bytes into the state.

Parameters

self: *Self
bytes: []const u8

Source Code

Source code
pub fn update(self: *Self, bytes: []const u8) void {
    self.st.absorb(bytes);
}

Functionfinal[src]

pub fn final(self: *Self, out: *[digest_length]u8) void

Return the hash of the absorbed bytes.

Parameters

self: *Self
out: *[digest_length]u8

Source Code

Source code
pub fn final(self: *Self, out: *[digest_length]u8) void {
    self.st.pad();
    self.st.squeeze(out[0..]);
}

Functionwriter[src]

pub fn writer(self: *Self) Writer

Parameters

self: *Self

Source Code

Source code
pub fn writer(self: *Self) Writer {
    return .{ .context = self };
}

Source Code

Source code
pub fn Keccak(comptime f: u11, comptime output_bits: u11, comptime default_delim: u8, comptime rounds: u5) type {
    comptime assert(output_bits > 0 and output_bits * 2 < f and output_bits % 8 == 0); // invalid output length

    const State = KeccakState(f, output_bits * 2, rounds);

    return struct {
        const Self = @This();

        st: State,

        /// The output length, in bytes.
        pub const digest_length = std.math.divCeil(comptime_int, output_bits, 8) catch unreachable;
        /// The block length, or rate, in bytes.
        pub const block_length = State.rate;
        /// The delimiter can be overwritten in the options.
        pub const Options = struct { delim: u8 = default_delim };

        /// Initialize a Keccak hash function.
        pub fn init(options: Options) Self {
            return Self{ .st = .{ .delim = options.delim } };
        }

        /// Hash a slice of bytes.
        pub fn hash(bytes: []const u8, out: *[digest_length]u8, options: Options) void {
            var st = Self.init(options);
            st.update(bytes);
            st.final(out);
        }

        /// Absorb a slice of bytes into the state.
        pub fn update(self: *Self, bytes: []const u8) void {
            self.st.absorb(bytes);
        }

        /// Return the hash of the absorbed bytes.
        pub fn final(self: *Self, out: *[digest_length]u8) void {
            self.st.pad();
            self.st.squeeze(out[0..]);
        }

        pub const Error = error{};
        pub const Writer = std.io.Writer(*Self, Error, write);

        fn write(self: *Self, bytes: []const u8) Error!usize {
            self.update(bytes);
            return bytes.len;
        }

        pub fn writer(self: *Self) Writer {
            return .{ .context = self };
        }
    };
}

Type FunctionShake[src]

The SHAKE extendable output hash function.

Parameters

security_level: u11

Types

TypeWriter[src]

Source Code

Source code
pub const Writer = std.io.Writer(*Self, Error, write)

Fields

st: State
buf: [State.rate]u8 = undefined
offset: usize = 0
padded: bool = false

Values

Constantdigest_length[src]

The recommended output length, in bytes.

Source Code

Source code
pub const digest_length = security_level / 8 * 2

Constantblock_length[src]

The block length, or rate, in bytes.

Source Code

Source code
pub const block_length = State.rate

Error Sets

Error SetError[src]

Source Code

Source code
pub const Error = error{}

Functions

Functioninit[src]

pub fn init(options: Options) Self

Initialize a SHAKE extensible hash function.

Parameters

options: Options

Source Code

Source code
pub fn init(options: Options) Self {
    return Self{ .st = .{ .delim = options.delim } };
}

Functionhash[src]

pub fn hash(bytes: []const u8, out: []u8, options: Options) void

Hash a slice of bytes. out can be any length.

Parameters

bytes: []const u8
out: []u8
options: Options

Source Code

Source code
pub fn hash(bytes: []const u8, out: []u8, options: Options) void {
    var st = Self.init(options);
    st.update(bytes);
    st.squeeze(out);
}

Functionupdate[src]

pub fn update(self: *Self, bytes: []const u8) void

Absorb a slice of bytes into the state.

Parameters

self: *Self
bytes: []const u8

Source Code

Source code
pub fn update(self: *Self, bytes: []const u8) void {
    self.st.absorb(bytes);
}

Functionsqueeze[src]

pub fn squeeze(self: *Self, out_: []u8) void

Squeeze a slice of bytes from the state. out can be any length, and the function can be called multiple times.

Parameters

self: *Self
out_: []u8

Source Code

Source code
pub fn squeeze(self: *Self, out_: []u8) void {
    if (!self.padded) {
        self.st.pad();
        self.padded = true;
    }
    var out = out_;
    if (self.offset > 0) {
        const left = self.buf.len - self.offset;
        if (left > 0) {
            const n = @min(left, out.len);
            @memcpy(out[0..n], self.buf[self.offset..][0..n]);
            out = out[n..];
            self.offset += n;
            if (out.len == 0) {
                return;
            }
        }
    }
    const full_blocks = out[0 .. out.len - out.len % State.rate];
    if (full_blocks.len > 0) {
        self.st.squeeze(full_blocks);
        out = out[full_blocks.len..];
    }
    if (out.len > 0) {
        self.st.squeeze(self.buf[0..]);
        @memcpy(out[0..], self.buf[0..out.len]);
        self.offset = out.len;
    }
}

Functionfinal[src]

pub fn final(self: *Self, out: []u8) void

Return the hash of the absorbed bytes. out can be of any length, but the function must not be called multiple times (use squeeze for that purpose instead).

Parameters

self: *Self
out: []u8

Source Code

Source code
pub fn final(self: *Self, out: []u8) void {
    self.squeeze(out);
    self.st.st.clear(0, State.rate);
}

FunctionfillBlock[src]

pub fn fillBlock(self: *Self) void

Align the input to a block boundary.

Parameters

self: *Self

Source Code

Source code
pub fn fillBlock(self: *Self) void {
    self.st.fillBlock();
}

Functionwriter[src]

pub fn writer(self: *Self) Writer

Parameters

self: *Self

Source Code

Source code
pub fn writer(self: *Self) Writer {
    return .{ .context = self };
}

Source Code

Source code
pub fn Shake(comptime security_level: u11) type {
    return ShakeLike(security_level, 0x1f, 24);
}

Type FunctionTurboShake[src]

The TurboSHAKE extendable output hash function. It is based on the same permutation as SHA3 and SHAKE, but which much higher performance. The delimiter is 0x1f by default, but can be changed for context-separation. https://eprint.iacr.org/2023/342

Parameters

security_level: u11
delim: ?u7

Types

TypeWriter[src]

Source Code

Source code
pub const Writer = std.io.Writer(*Self, Error, write)

Fields

st: State
buf: [State.rate]u8 = undefined
offset: usize = 0
padded: bool = false

Values

Constantdigest_length[src]

The recommended output length, in bytes.

Source Code

Source code
pub const digest_length = security_level / 8 * 2

Constantblock_length[src]

The block length, or rate, in bytes.

Source Code

Source code
pub const block_length = State.rate

Error Sets

Error SetError[src]

Source Code

Source code
pub const Error = error{}

Functions

Functioninit[src]

pub fn init(options: Options) Self

Initialize a SHAKE extensible hash function.

Parameters

options: Options

Source Code

Source code
pub fn init(options: Options) Self {
    return Self{ .st = .{ .delim = options.delim } };
}

Functionhash[src]

pub fn hash(bytes: []const u8, out: []u8, options: Options) void

Hash a slice of bytes. out can be any length.

Parameters

bytes: []const u8
out: []u8
options: Options

Source Code

Source code
pub fn hash(bytes: []const u8, out: []u8, options: Options) void {
    var st = Self.init(options);
    st.update(bytes);
    st.squeeze(out);
}

Functionupdate[src]

pub fn update(self: *Self, bytes: []const u8) void

Absorb a slice of bytes into the state.

Parameters

self: *Self
bytes: []const u8

Source Code

Source code
pub fn update(self: *Self, bytes: []const u8) void {
    self.st.absorb(bytes);
}

Functionsqueeze[src]

pub fn squeeze(self: *Self, out_: []u8) void

Squeeze a slice of bytes from the state. out can be any length, and the function can be called multiple times.

Parameters

self: *Self
out_: []u8

Source Code

Source code
pub fn squeeze(self: *Self, out_: []u8) void {
    if (!self.padded) {
        self.st.pad();
        self.padded = true;
    }
    var out = out_;
    if (self.offset > 0) {
        const left = self.buf.len - self.offset;
        if (left > 0) {
            const n = @min(left, out.len);
            @memcpy(out[0..n], self.buf[self.offset..][0..n]);
            out = out[n..];
            self.offset += n;
            if (out.len == 0) {
                return;
            }
        }
    }
    const full_blocks = out[0 .. out.len - out.len % State.rate];
    if (full_blocks.len > 0) {
        self.st.squeeze(full_blocks);
        out = out[full_blocks.len..];
    }
    if (out.len > 0) {
        self.st.squeeze(self.buf[0..]);
        @memcpy(out[0..], self.buf[0..out.len]);
        self.offset = out.len;
    }
}

Functionfinal[src]

pub fn final(self: *Self, out: []u8) void

Return the hash of the absorbed bytes. out can be of any length, but the function must not be called multiple times (use squeeze for that purpose instead).

Parameters

self: *Self
out: []u8

Source Code

Source code
pub fn final(self: *Self, out: []u8) void {
    self.squeeze(out);
    self.st.st.clear(0, State.rate);
}

FunctionfillBlock[src]

pub fn fillBlock(self: *Self) void

Align the input to a block boundary.

Parameters

self: *Self

Source Code

Source code
pub fn fillBlock(self: *Self) void {
    self.st.fillBlock();
}

Functionwriter[src]

pub fn writer(self: *Self) Writer

Parameters

self: *Self

Source Code

Source code
pub fn writer(self: *Self) Writer {
    return .{ .context = self };
}

Source Code

Source code
pub fn TurboShake(comptime security_level: u11, comptime delim: ?u7) type {
    comptime assert(security_level <= 256);
    const d = delim orelse 0x1f;
    comptime assert(d >= 0x01); // delimiter must be >= 1
    return ShakeLike(security_level, d, 12);
}

Type FunctionCShake[src]

The cSHAKE extendable output hash function. cSHAKE is similar to SHAKE, but in addition to the input message, it also takes an optional context (aka customization string).

Parameters

security_level: u11
fname: ?[]const u8

Types

TypeWriter[src]

Source Code

Source code
pub const Writer = std.io.Writer(*Self, Error, write)

Fields

shaker: Shaker

Values

Constantdigest_length[src]

The recommended output length, in bytes.

Source Code

Source code
pub const digest_length = Shaker.digest_length

Constantblock_length[src]

The block length, or rate, in bytes.

Source Code

Source code
pub const block_length = Shaker.block_length

Error Sets

Error SetError[src]

Source Code

Source code
pub const Error = error{}

Functions

Functioninit[src]

pub fn init(options: Options) Self

Initialize a SHAKE extensible hash function.

Parameters

options: Options

Source Code

Source code
pub fn init(options: Options) Self {
    if (fname == null and options.context == null) {
        return Self{ .shaker = Shaker.init(.{ .delim = 0x1f }) };
    }
    var shaker = Shaker.init(.{});
    comptime assert(Shaker.block_length % 8 == 0);
    const encoded_rate_len = NistLengthEncoding.encode(.left, block_length / 8);
    shaker.update(encoded_rate_len.slice());
    const encoded_zero = comptime NistLengthEncoding.encode(.left, 0);
    if (fname) |name| {
        const encoded_fname_len = comptime NistLengthEncoding.encode(.left, name.len);
        const encoded_fname = comptime encoded_fname_len.slice() ++ name;
        shaker.update(encoded_fname);
    } else {
        shaker.update(encoded_zero.slice());
    }
    if (options.context) |context| {
        const encoded_context_len = NistLengthEncoding.encode(.left, context.len);
        shaker.update(encoded_context_len.slice());
        shaker.update(context);
    } else {
        shaker.update(encoded_zero.slice());
    }
    shaker.st.fillBlock();
    return Self{ .shaker = shaker };
}

Functionhash[src]

pub fn hash(bytes: []const u8, out: []u8, options: Options) void

Hash a slice of bytes. out can be any length.

Parameters

bytes: []const u8
out: []u8
options: Options

Source Code

Source code
pub fn hash(bytes: []const u8, out: []u8, options: Options) void {
    var st = Self.init(options);
    st.update(bytes);
    st.squeeze(out);
}

Functionupdate[src]

pub fn update(self: *Self, bytes: []const u8) void

Absorb a slice of bytes into the state.

Parameters

self: *Self
bytes: []const u8

Source Code

Source code
pub fn update(self: *Self, bytes: []const u8) void {
    self.shaker.update(bytes);
}

Functionsqueeze[src]

pub fn squeeze(self: *Self, out: []u8) void

Squeeze a slice of bytes from the state. out can be any length, and the function can be called multiple times.

Parameters

self: *Self
out: []u8

Source Code

Source code
pub fn squeeze(self: *Self, out: []u8) void {
    self.shaker.squeeze(out);
}

Functionfinal[src]

pub fn final(self: *Self, out: []u8) void

Return the hash of the absorbed bytes. out can be of any length, but the function must not be called multiple times (use squeeze for that purpose instead).

Parameters

self: *Self
out: []u8

Source Code

Source code
pub fn final(self: *Self, out: []u8) void {
    self.shaker.final(out);
}

FunctionfillBlock[src]

pub fn fillBlock(self: *Self) void

Align the input to a block boundary.

Parameters

self: *Self

Source Code

Source code
pub fn fillBlock(self: *Self) void {
    self.shaker.fillBlock();
}

Functionwriter[src]

pub fn writer(self: *Self) Writer

Parameters

self: *Self

Source Code

Source code
pub fn writer(self: *Self) Writer {
    return .{ .context = self };
}

Source Code

Source code
pub fn CShake(comptime security_level: u11, comptime fname: ?[]const u8) type {
    return CShakeLike(security_level, 0x04, 24, fname);
}

Type FunctionKMac[src]

The KMAC extendable output authentication function. KMAC is a keyed version of the cSHAKE function, with an optional context. It can be used as an SHA-3 based alternative to HMAC, as well as a generic keyed XoF (extendable output function).

Parameters

security_level: u11

Types

TypeWriter[src]

Source Code

Source code
pub const Writer = std.io.Writer(*Self, Error, write)

Fields

cshaker: CShaker
xof_mode: bool = false

Values

Constantmac_length[src]

The recommended output length, in bytes.

Source Code

Source code
pub const mac_length = CShaker.digest_length

Constantmac_length_min[src]

The minimum output length, in bytes.

Source Code

Source code
pub const mac_length_min = 4

Constantkey_length[src]

The recommended key length, in bytes.

Source Code

Source code
pub const key_length = security_level / 8

Constantkey_length_min[src]

The minimum key length, in bytes.

Source Code

Source code
pub const key_length_min = 0

Constantblock_length[src]

The block length, or rate, in bytes.

Source Code

Source code
pub const block_length = CShaker.block_length

Error Sets

Error SetError[src]

Source Code

Source code
pub const Error = error{}

Functions

FunctioninitWithOptions[src]

pub fn initWithOptions(key: []const u8, options: Options) Self

Initialize a state for the KMAC function, with an optional context and an arbitrary-long key. If the context and key are going to be reused, the structure can be initialized once, and cloned for each message. This is more efficient than reinitializing the state for each message at the cost of a small amount of memory.

Parameters

key: []const u8
options: Options

Source Code

Source code
pub fn initWithOptions(key: []const u8, options: Options) Self {
    var cshaker = CShaker.init(.{ .context = options.context });
    const encoded_rate_len = NistLengthEncoding.encode(.left, block_length / 8);
    cshaker.update(encoded_rate_len.slice());
    const encoded_key_len = NistLengthEncoding.encode(.left, key.len);
    cshaker.update(encoded_key_len.slice());
    cshaker.update(key);
    cshaker.fillBlock();
    return Self{
        .cshaker = cshaker,
    };
}

Functioninit[src]

pub fn init(key: []const u8) Self

Initialize a state for the KMAC function. If the context and key are going to be reused, the structure can be initialized once, and cloned for each message. This is more efficient than reinitializing the state for each message at the cost of a small amount of memory.

Parameters

key: []const u8

Source Code

Source code
pub fn init(key: []const u8) Self {
    return initWithOptions(key, .{});
}

Functionupdate[src]

pub fn update(self: *Self, b: []const u8) void

Add data to the state.

Parameters

self: *Self
b: []const u8

Source Code

Source code
pub fn update(self: *Self, b: []const u8) void {
    self.cshaker.update(b);
}

Functionfinal[src]

pub fn final(self: *Self, out: []u8) void

Return an authentication tag for the current state.

Parameters

self: *Self
out: []u8

Source Code

Source code
pub fn final(self: *Self, out: []u8) void {
    const encoded_out_len = NistLengthEncoding.encode(.right, out.len);
    self.update(encoded_out_len.slice());
    self.cshaker.final(out);
}

Functionsqueeze[src]

pub fn squeeze(self: *Self, out: []u8) void

Squeeze a slice of bytes from the state. out can be any length, and the function can be called multiple times.

Parameters

self: *Self
out: []u8

Source Code

Source code
pub fn squeeze(self: *Self, out: []u8) void {
    if (!self.xof_mode) {
        const encoded_out_len = comptime NistLengthEncoding.encode(.right, 0);
        self.update(encoded_out_len.slice());
        self.xof_mode = true;
    }
    self.cshaker.squeeze(out);
}

FunctioncreateWithOptions[src]

pub fn createWithOptions(out: []u8, msg: []const u8, key: []const u8, options: Options) void

Return an authentication tag for a message and a key, with an optional context.

Parameters

out: []u8
msg: []const u8
key: []const u8
options: Options

Source Code

Source code
pub fn createWithOptions(out: []u8, msg: []const u8, key: []const u8, options: Options) void {
    var ctx = Self.initWithOptions(key, options);
    ctx.update(msg);
    ctx.final(out);
}

Functioncreate[src]

pub fn create(out: []u8, msg: []const u8, key: []const u8) void

Return an authentication tag for a message and a key.

Parameters

out: []u8
msg: []const u8
key: []const u8

Source Code

Source code
pub fn create(out: []u8, msg: []const u8, key: []const u8) void {
    var ctx = Self.init(key);
    ctx.update(msg);
    ctx.final(out);
}

Functionwriter[src]

pub fn writer(self: *Self) Writer

Parameters

self: *Self

Source Code

Source code
pub fn writer(self: *Self) Writer {
    return .{ .context = self };
}

Source Code

Source code
pub fn KMac(comptime security_level: u11) type {
    return KMacLike(security_level, 0x04, 24);
}

Type FunctionTupleHash[src]

The TupleHash extendable output hash function, with domain-separated inputs. TupleHash is a secure hash function with a variable output length, based on the cSHAKE function. It is designed for unambiguously hashing tuples of data.

With most hash functions, calling update("A") followed by update("B")is identical to update("AB"). With TupleHash, this is not the case: update("A"); update("B") is different from update("AB").

Any number of inputs can be hashed, and the output depends on individual inputs and their order.

Parameters

security_level: u11

Types

TypeWriter[src]

Source Code

Source code
pub const Writer = std.io.Writer(*Self, Error, write)

Fields

cshaker: CShaker
xof_mode: bool = false

Values

Constantdigest_length[src]

The output length, in bytes.

Source Code

Source code
pub const digest_length = CShaker.digest_length

Constantblock_length[src]

The block length, or rate, in bytes.

Source Code

Source code
pub const block_length = CShaker.block_length

Error Sets

Error SetError[src]

Source Code

Source code
pub const Error = error{}

Functions

FunctioninitWithOptions[src]

pub fn initWithOptions(options: Options) Self

Initialize a state for the TupleHash function, with an optional context. If the context is going to be reused, the structure can be initialized once, and cloned for each message. This is more efficient than reinitializing the state for each message at the cost of a small amount of memory.

A key can be optionally added to the context to create a keyed TupleHash function, similar to KMAC.

Parameters

options: Options

Source Code

Source code
pub fn initWithOptions(options: Options) Self {
    const cshaker = CShaker.init(.{ .context = options.context });
    return Self{
        .cshaker = cshaker,
    };
}

Functioninit[src]

pub fn init() Self

Initialize a state for the MAC function.

Source Code

Source code
pub fn init() Self {
    return initWithOptions(.{});
}

Functionupdate[src]

pub fn update(self: *Self, b: []const u8) void

Add data to the state, separated from previous updates.

Parameters

self: *Self
b: []const u8

Source Code

Source code
pub fn update(self: *Self, b: []const u8) void {
    const encoded_b_len = NistLengthEncoding.encode(.left, b.len);
    self.cshaker.update(encoded_b_len.slice());
    self.cshaker.update(b);
}

Functionfinal[src]

pub fn final(self: *Self, out: []u8) void

Return an authentication tag for the current state.

Parameters

self: *Self
out: []u8

Source Code

Source code
pub fn final(self: *Self, out: []u8) void {
    const encoded_out_len = NistLengthEncoding.encode(.right, out.len);
    self.cshaker.update(encoded_out_len.slice());
    self.cshaker.final(out);
}

FunctionfillBlock[src]

pub fn fillBlock(self: *Self) void

Align the input to a block boundary.

Parameters

self: *Self

Source Code

Source code
pub fn fillBlock(self: *Self) void {
    self.cshaker.fillBlock();
}

Functionsqueeze[src]

pub fn squeeze(self: *Self, out: []u8) void

Squeeze a slice of bytes from the state. out can be any length, and the function can be called multiple times.

Parameters

self: *Self
out: []u8

Source Code

Source code
pub fn squeeze(self: *Self, out: []u8) void {
    if (!self.xof_mode) {
        const encoded_out_len = comptime NistLengthEncoding.encode(.right, 0);
        self.update(encoded_out_len.slice());
        self.xof_mode = true;
    }
    self.cshaker.squeeze(out);
}

Functionwriter[src]

pub fn writer(self: *Self) Writer

Parameters

self: *Self

Source Code

Source code
pub fn writer(self: *Self) Writer {
    return .{ .context = self };
}

Source Code

Source code
pub fn TupleHash(comptime security_level: u11) type {
    return TupleHashLike(security_level, 0x04, 24);
}

Source Code

Source code
const std = @import("std");
const assert = std.debug.assert;
const math = std.math;
const mem = std.mem;

const KeccakState = std.crypto.core.keccak.State;

pub const Sha3_224 = Keccak(1600, 224, 0x06, 24);
pub const Sha3_256 = Keccak(1600, 256, 0x06, 24);
pub const Sha3_384 = Keccak(1600, 384, 0x06, 24);
pub const Sha3_512 = Keccak(1600, 512, 0x06, 24);

pub const Keccak256 = Keccak(1600, 256, 0x01, 24);
pub const Keccak512 = Keccak(1600, 512, 0x01, 24);

pub const Shake128 = Shake(128);
pub const Shake256 = Shake(256);

pub const CShake128 = CShake(128, null);
pub const CShake256 = CShake(256, null);

pub const KMac128 = KMac(128);
pub const KMac256 = KMac(256);

pub const TupleHash128 = TupleHash(128);
pub const TupleHash256 = TupleHash(256);

/// TurboSHAKE128 is a XOF (a secure hash function with a variable output length), with a 128 bit security level.
/// It is based on the same permutation as SHA3 and SHAKE128, but which much higher performance.
/// The delimiter is 0x1f by default, but can be changed for context-separation.
/// For a protocol that uses both KangarooTwelve and TurboSHAKE128, it is recommended to avoid using 0x06, 0x07 or 0x0b for the delimiter.
pub fn TurboShake128(delim: ?u7) type {
    return TurboShake(128, delim);
}

/// TurboSHAKE256 is a XOF (a secure hash function with a variable output length), with a 256 bit security level.
/// It is based on the same permutation as SHA3 and SHAKE256, but which much higher performance.
/// The delimiter is 0x1f by default, but can be changed for context-separation.
pub fn TurboShake256(comptime delim: ?u7) type {
    return TurboShake(256, delim);
}

/// A generic Keccak hash function.
pub fn Keccak(comptime f: u11, comptime output_bits: u11, comptime default_delim: u8, comptime rounds: u5) type {
    comptime assert(output_bits > 0 and output_bits * 2 < f and output_bits % 8 == 0); // invalid output length

    const State = KeccakState(f, output_bits * 2, rounds);

    return struct {
        const Self = @This();

        st: State,

        /// The output length, in bytes.
        pub const digest_length = std.math.divCeil(comptime_int, output_bits, 8) catch unreachable;
        /// The block length, or rate, in bytes.
        pub const block_length = State.rate;
        /// The delimiter can be overwritten in the options.
        pub const Options = struct { delim: u8 = default_delim };

        /// Initialize a Keccak hash function.
        pub fn init(options: Options) Self {
            return Self{ .st = .{ .delim = options.delim } };
        }

        /// Hash a slice of bytes.
        pub fn hash(bytes: []const u8, out: *[digest_length]u8, options: Options) void {
            var st = Self.init(options);
            st.update(bytes);
            st.final(out);
        }

        /// Absorb a slice of bytes into the state.
        pub fn update(self: *Self, bytes: []const u8) void {
            self.st.absorb(bytes);
        }

        /// Return the hash of the absorbed bytes.
        pub fn final(self: *Self, out: *[digest_length]u8) void {
            self.st.pad();
            self.st.squeeze(out[0..]);
        }

        pub const Error = error{};
        pub const Writer = std.io.Writer(*Self, Error, write);

        fn write(self: *Self, bytes: []const u8) Error!usize {
            self.update(bytes);
            return bytes.len;
        }

        pub fn writer(self: *Self) Writer {
            return .{ .context = self };
        }
    };
}

/// The SHAKE extendable output hash function.
pub fn Shake(comptime security_level: u11) type {
    return ShakeLike(security_level, 0x1f, 24);
}

/// The TurboSHAKE extendable output hash function.
/// It is based on the same permutation as SHA3 and SHAKE, but which much higher performance.
/// The delimiter is 0x1f by default, but can be changed for context-separation.
/// https://eprint.iacr.org/2023/342
pub fn TurboShake(comptime security_level: u11, comptime delim: ?u7) type {
    comptime assert(security_level <= 256);
    const d = delim orelse 0x1f;
    comptime assert(d >= 0x01); // delimiter must be >= 1
    return ShakeLike(security_level, d, 12);
}

fn ShakeLike(comptime security_level: u11, comptime default_delim: u8, comptime rounds: u5) type {
    const f = 1600;
    const State = KeccakState(f, security_level * 2, rounds);

    return struct {
        const Self = @This();

        st: State,
        buf: [State.rate]u8 = undefined,
        offset: usize = 0,
        padded: bool = false,

        /// The recommended output length, in bytes.
        pub const digest_length = security_level / 8 * 2;
        /// The block length, or rate, in bytes.
        pub const block_length = State.rate;
        /// The delimiter can be overwritten in the options.
        pub const Options = struct { delim: u8 = default_delim };

        /// Initialize a SHAKE extensible hash function.
        pub fn init(options: Options) Self {
            return Self{ .st = .{ .delim = options.delim } };
        }

        /// Hash a slice of bytes.
        /// `out` can be any length.
        pub fn hash(bytes: []const u8, out: []u8, options: Options) void {
            var st = Self.init(options);
            st.update(bytes);
            st.squeeze(out);
        }

        /// Absorb a slice of bytes into the state.
        pub fn update(self: *Self, bytes: []const u8) void {
            self.st.absorb(bytes);
        }

        /// Squeeze a slice of bytes from the state.
        /// `out` can be any length, and the function can be called multiple times.
        pub fn squeeze(self: *Self, out_: []u8) void {
            if (!self.padded) {
                self.st.pad();
                self.padded = true;
            }
            var out = out_;
            if (self.offset > 0) {
                const left = self.buf.len - self.offset;
                if (left > 0) {
                    const n = @min(left, out.len);
                    @memcpy(out[0..n], self.buf[self.offset..][0..n]);
                    out = out[n..];
                    self.offset += n;
                    if (out.len == 0) {
                        return;
                    }
                }
            }
            const full_blocks = out[0 .. out.len - out.len % State.rate];
            if (full_blocks.len > 0) {
                self.st.squeeze(full_blocks);
                out = out[full_blocks.len..];
            }
            if (out.len > 0) {
                self.st.squeeze(self.buf[0..]);
                @memcpy(out[0..], self.buf[0..out.len]);
                self.offset = out.len;
            }
        }

        /// Return the hash of the absorbed bytes.
        /// `out` can be of any length, but the function must not be called multiple times (use `squeeze` for that purpose instead).
        pub fn final(self: *Self, out: []u8) void {
            self.squeeze(out);
            self.st.st.clear(0, State.rate);
        }

        /// Align the input to a block boundary.
        pub fn fillBlock(self: *Self) void {
            self.st.fillBlock();
        }

        pub const Error = error{};
        pub const Writer = std.io.Writer(*Self, Error, write);

        fn write(self: *Self, bytes: []const u8) Error!usize {
            self.update(bytes);
            return bytes.len;
        }

        pub fn writer(self: *Self) Writer {
            return .{ .context = self };
        }
    };
}

/// The cSHAKE extendable output hash function.
/// cSHAKE is similar to SHAKE, but in addition to the input message, it also takes an optional context (aka customization string).
pub fn CShake(comptime security_level: u11, comptime fname: ?[]const u8) type {
    return CShakeLike(security_level, 0x04, 24, fname);
}

fn CShakeLike(comptime security_level: u11, comptime default_delim: u8, comptime rounds: u5, comptime fname: ?[]const u8) type {
    return struct {
        const Shaker = ShakeLike(security_level, default_delim, rounds);
        shaker: Shaker,

        /// The recommended output length, in bytes.
        pub const digest_length = Shaker.digest_length;
        /// The block length, or rate, in bytes.
        pub const block_length = Shaker.block_length;

        /// cSHAKE options can include a context string.
        pub const Options = struct { context: ?[]const u8 = null };

        const Self = @This();

        /// Initialize a SHAKE extensible hash function.
        pub fn init(options: Options) Self {
            if (fname == null and options.context == null) {
                return Self{ .shaker = Shaker.init(.{ .delim = 0x1f }) };
            }
            var shaker = Shaker.init(.{});
            comptime assert(Shaker.block_length % 8 == 0);
            const encoded_rate_len = NistLengthEncoding.encode(.left, block_length / 8);
            shaker.update(encoded_rate_len.slice());
            const encoded_zero = comptime NistLengthEncoding.encode(.left, 0);
            if (fname) |name| {
                const encoded_fname_len = comptime NistLengthEncoding.encode(.left, name.len);
                const encoded_fname = comptime encoded_fname_len.slice() ++ name;
                shaker.update(encoded_fname);
            } else {
                shaker.update(encoded_zero.slice());
            }
            if (options.context) |context| {
                const encoded_context_len = NistLengthEncoding.encode(.left, context.len);
                shaker.update(encoded_context_len.slice());
                shaker.update(context);
            } else {
                shaker.update(encoded_zero.slice());
            }
            shaker.st.fillBlock();
            return Self{ .shaker = shaker };
        }

        /// Hash a slice of bytes.
        /// `out` can be any length.
        pub fn hash(bytes: []const u8, out: []u8, options: Options) void {
            var st = Self.init(options);
            st.update(bytes);
            st.squeeze(out);
        }

        /// Absorb a slice of bytes into the state.
        pub fn update(self: *Self, bytes: []const u8) void {
            self.shaker.update(bytes);
        }

        /// Squeeze a slice of bytes from the state.
        /// `out` can be any length, and the function can be called multiple times.
        pub fn squeeze(self: *Self, out: []u8) void {
            self.shaker.squeeze(out);
        }

        /// Return the hash of the absorbed bytes.
        /// `out` can be of any length, but the function must not be called multiple times (use `squeeze` for that purpose instead).
        pub fn final(self: *Self, out: []u8) void {
            self.shaker.final(out);
        }

        /// Align the input to a block boundary.
        pub fn fillBlock(self: *Self) void {
            self.shaker.fillBlock();
        }

        pub const Error = error{};
        pub const Writer = std.io.Writer(*Self, Error, write);

        fn write(self: *Self, bytes: []const u8) Error!usize {
            self.update(bytes);
            return bytes.len;
        }

        pub fn writer(self: *Self) Writer {
            return .{ .context = self };
        }
    };
}

/// The KMAC extendable output authentication function.
/// KMAC is a keyed version of the cSHAKE function, with an optional context.
/// It can be used as an SHA-3 based alternative to HMAC, as well as a generic keyed XoF (extendable output function).
pub fn KMac(comptime security_level: u11) type {
    return KMacLike(security_level, 0x04, 24);
}

fn KMacLike(comptime security_level: u11, comptime default_delim: u8, comptime rounds: u5) type {
    const CShaker = CShakeLike(security_level, default_delim, rounds, "KMAC");

    return struct {
        const Self = @This();

        /// The recommended output length, in bytes.
        pub const mac_length = CShaker.digest_length;
        /// The minimum output length, in bytes.
        pub const mac_length_min = 4;
        /// The recommended key length, in bytes.
        pub const key_length = security_level / 8;
        /// The minimum key length, in bytes.
        pub const key_length_min = 0;
        /// The block length, or rate, in bytes.
        pub const block_length = CShaker.block_length;

        cshaker: CShaker,
        xof_mode: bool = false,

        /// KMAC options can include a context string.
        pub const Options = struct {
            context: ?[]const u8 = null,
        };

        /// Initialize a state for the KMAC function, with an optional context and an arbitrary-long key.
        /// If the context and key are going to be reused, the structure can be initialized once, and cloned for each message.
        /// This is more efficient than reinitializing the state for each message at the cost of a small amount of memory.
        pub fn initWithOptions(key: []const u8, options: Options) Self {
            var cshaker = CShaker.init(.{ .context = options.context });
            const encoded_rate_len = NistLengthEncoding.encode(.left, block_length / 8);
            cshaker.update(encoded_rate_len.slice());
            const encoded_key_len = NistLengthEncoding.encode(.left, key.len);
            cshaker.update(encoded_key_len.slice());
            cshaker.update(key);
            cshaker.fillBlock();
            return Self{
                .cshaker = cshaker,
            };
        }

        /// Initialize a state for the KMAC function.
        /// If the context and key are going to be reused, the structure can be initialized once, and cloned for each message.
        /// This is more efficient than reinitializing the state for each message at the cost of a small amount of memory.
        pub fn init(key: []const u8) Self {
            return initWithOptions(key, .{});
        }

        /// Add data to the state.
        pub fn update(self: *Self, b: []const u8) void {
            self.cshaker.update(b);
        }

        /// Return an authentication tag for the current state.
        pub fn final(self: *Self, out: []u8) void {
            const encoded_out_len = NistLengthEncoding.encode(.right, out.len);
            self.update(encoded_out_len.slice());
            self.cshaker.final(out);
        }

        /// Squeeze a slice of bytes from the state.
        /// `out` can be any length, and the function can be called multiple times.
        pub fn squeeze(self: *Self, out: []u8) void {
            if (!self.xof_mode) {
                const encoded_out_len = comptime NistLengthEncoding.encode(.right, 0);
                self.update(encoded_out_len.slice());
                self.xof_mode = true;
            }
            self.cshaker.squeeze(out);
        }

        /// Return an authentication tag for a message and a key, with an optional context.
        pub fn createWithOptions(out: []u8, msg: []const u8, key: []const u8, options: Options) void {
            var ctx = Self.initWithOptions(key, options);
            ctx.update(msg);
            ctx.final(out);
        }

        /// Return an authentication tag for a message and a key.
        pub fn create(out: []u8, msg: []const u8, key: []const u8) void {
            var ctx = Self.init(key);
            ctx.update(msg);
            ctx.final(out);
        }

        pub const Error = error{};
        pub const Writer = std.io.Writer(*Self, Error, write);

        fn write(self: *Self, bytes: []const u8) Error!usize {
            self.update(bytes);
            return bytes.len;
        }

        pub fn writer(self: *Self) Writer {
            return .{ .context = self };
        }
    };
}

/// The TupleHash extendable output hash function, with domain-separated inputs.
/// TupleHash is a secure hash function with a variable output length, based on the cSHAKE function.
/// It is designed for unambiguously hashing tuples of data.
///
/// With most hash functions, calling `update("A")` followed by `update("B")`is identical to `update("AB")`.
/// With TupleHash, this is not the case: `update("A"); update("B")` is different from `update("AB")`.
///
/// Any number of inputs can be hashed, and the output depends on individual inputs and their order.
pub fn TupleHash(comptime security_level: u11) type {
    return TupleHashLike(security_level, 0x04, 24);
}

fn TupleHashLike(comptime security_level: u11, comptime default_delim: u8, comptime rounds: u5) type {
    const CShaker = CShakeLike(security_level, default_delim, rounds, "TupleHash");

    return struct {
        const Self = @This();

        /// The output length, in bytes.
        pub const digest_length = CShaker.digest_length;
        /// The block length, or rate, in bytes.
        pub const block_length = CShaker.block_length;

        cshaker: CShaker,
        xof_mode: bool = false,

        /// TupleHash options can include a context string.
        pub const Options = struct {
            context: ?[]const u8 = null,
        };

        /// Initialize a state for the TupleHash function, with an optional context.
        /// If the context is going to be reused, the structure can be initialized once, and cloned for each message.
        /// This is more efficient than reinitializing the state for each message at the cost of a small amount of memory.
        ///
        /// A key can be optionally added to the context to create a keyed TupleHash function, similar to KMAC.
        pub fn initWithOptions(options: Options) Self {
            const cshaker = CShaker.init(.{ .context = options.context });
            return Self{
                .cshaker = cshaker,
            };
        }

        /// Initialize a state for the MAC function.
        pub fn init() Self {
            return initWithOptions(.{});
        }

        /// Add data to the state, separated from previous updates.
        pub fn update(self: *Self, b: []const u8) void {
            const encoded_b_len = NistLengthEncoding.encode(.left, b.len);
            self.cshaker.update(encoded_b_len.slice());
            self.cshaker.update(b);
        }

        /// Return an authentication tag for the current state.
        pub fn final(self: *Self, out: []u8) void {
            const encoded_out_len = NistLengthEncoding.encode(.right, out.len);
            self.cshaker.update(encoded_out_len.slice());
            self.cshaker.final(out);
        }

        /// Align the input to a block boundary.
        pub fn fillBlock(self: *Self) void {
            self.cshaker.fillBlock();
        }

        /// Squeeze a slice of bytes from the state.
        /// `out` can be any length, and the function can be called multiple times.
        pub fn squeeze(self: *Self, out: []u8) void {
            if (!self.xof_mode) {
                const encoded_out_len = comptime NistLengthEncoding.encode(.right, 0);
                self.update(encoded_out_len.slice());
                self.xof_mode = true;
            }
            self.cshaker.squeeze(out);
        }

        pub const Error = error{};
        pub const Writer = std.io.Writer(*Self, Error, write);

        fn write(self: *Self, bytes: []const u8) Error!usize {
            self.update(bytes);
            return bytes.len;
        }

        pub fn writer(self: *Self) Writer {
            return .{ .context = self };
        }
    };
}

/// The NIST SP 800-185 encoded length format.
pub const NistLengthEncoding = enum {
    left,
    right,

    /// A length encoded according to NIST SP 800-185.
    pub const Length = struct {
        /// The size of the encoded value, in bytes.
        len: usize = 0,
        /// A buffer to store the encoded length.
        buf: [@sizeOf(usize) + 1]u8 = undefined,

        /// Return the encoded length as a slice.
        pub fn slice(self: *const Length) []const u8 {
            return self.buf[0..self.len];
        }
    };

    /// Encode a length according to NIST SP 800-185.
    pub fn encode(comptime encoding: NistLengthEncoding, len: usize) Length {
        const len_bits = @bitSizeOf(@TypeOf(len)) - @clz(len) + 3;
        const len_bytes = std.math.divCeil(usize, len_bits, 8) catch unreachable;

        var res = Length{ .len = len_bytes + 1 };
        if (encoding == .right) {
            res.buf[len_bytes] = @intCast(len_bytes);
        }
        const end = if (encoding == .right) len_bytes - 1 else len_bytes;
        res.buf[end] = @truncate(len << 3);
        var len_ = len >> 5;
        for (1..len_bytes) |i| {
            res.buf[end - i] = @truncate(len_);
            len_ >>= 8;
        }
        if (encoding == .left) {
            res.buf[0] = @intCast(len_bytes);
        }
        return res;
    }
};

const htest = @import("test.zig");

test "sha3-224 single" {
    try htest.assertEqualHash(Sha3_224, "6b4e03423667dbb73b6e15454f0eb1abd4597f9a1b078e3f5b5a6bc7", "");
    try htest.assertEqualHash(Sha3_224, "e642824c3f8cf24ad09234ee7d3c766fc9a3a5168d0c94ad73b46fdf", "abc");
    try htest.assertEqualHash(Sha3_224, "543e6868e1666c1a643630df77367ae5a62a85070a51c14cbf665cbc", "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmnhijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu");
}

test "sha3-224 streaming" {
    var h = Sha3_224.init(.{});
    var out: [28]u8 = undefined;

    h.final(out[0..]);
    try htest.assertEqual("6b4e03423667dbb73b6e15454f0eb1abd4597f9a1b078e3f5b5a6bc7", out[0..]);

    h = Sha3_224.init(.{});
    h.update("abc");
    h.final(out[0..]);
    try htest.assertEqual("e642824c3f8cf24ad09234ee7d3c766fc9a3a5168d0c94ad73b46fdf", out[0..]);

    h = Sha3_224.init(.{});
    h.update("a");
    h.update("b");
    h.update("c");
    h.final(out[0..]);
    try htest.assertEqual("e642824c3f8cf24ad09234ee7d3c766fc9a3a5168d0c94ad73b46fdf", out[0..]);
}

test "sha3-256 single" {
    try htest.assertEqualHash(Sha3_256, "a7ffc6f8bf1ed76651c14756a061d662f580ff4de43b49fa82d80a4b80f8434a", "");
    try htest.assertEqualHash(Sha3_256, "3a985da74fe225b2045c172d6bd390bd855f086e3e9d525b46bfe24511431532", "abc");
    try htest.assertEqualHash(Sha3_256, "916f6061fe879741ca6469b43971dfdb28b1a32dc36cb3254e812be27aad1d18", "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmnhijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu");
}

test "sha3-256 streaming" {
    var h = Sha3_256.init(.{});
    var out: [32]u8 = undefined;

    h.final(out[0..]);
    try htest.assertEqual("a7ffc6f8bf1ed76651c14756a061d662f580ff4de43b49fa82d80a4b80f8434a", out[0..]);

    h = Sha3_256.init(.{});
    h.update("abc");
    h.final(out[0..]);
    try htest.assertEqual("3a985da74fe225b2045c172d6bd390bd855f086e3e9d525b46bfe24511431532", out[0..]);

    h = Sha3_256.init(.{});
    h.update("a");
    h.update("b");
    h.update("c");
    h.final(out[0..]);
    try htest.assertEqual("3a985da74fe225b2045c172d6bd390bd855f086e3e9d525b46bfe24511431532", out[0..]);
}

test "sha3-256 aligned final" {
    var block = [_]u8{0} ** Sha3_256.block_length;
    var out: [Sha3_256.digest_length]u8 = undefined;

    var h = Sha3_256.init(.{});
    h.update(&block);
    h.final(out[0..]);
}

test "sha3-384 single" {
    const h1 = "0c63a75b845e4f7d01107d852e4c2485c51a50aaaa94fc61995e71bbee983a2ac3713831264adb47fb6bd1e058d5f004";
    try htest.assertEqualHash(Sha3_384, h1, "");
    const h2 = "ec01498288516fc926459f58e2c6ad8df9b473cb0fc08c2596da7cf0e49be4b298d88cea927ac7f539f1edf228376d25";
    try htest.assertEqualHash(Sha3_384, h2, "abc");
    const h3 = "79407d3b5916b59c3e30b09822974791c313fb9ecc849e406f23592d04f625dc8c709b98b43b3852b337216179aa7fc7";
    try htest.assertEqualHash(Sha3_384, h3, "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmnhijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu");
}

test "sha3-384 streaming" {
    var h = Sha3_384.init(.{});
    var out: [48]u8 = undefined;

    const h1 = "0c63a75b845e4f7d01107d852e4c2485c51a50aaaa94fc61995e71bbee983a2ac3713831264adb47fb6bd1e058d5f004";
    h.final(out[0..]);
    try htest.assertEqual(h1, out[0..]);

    const h2 = "ec01498288516fc926459f58e2c6ad8df9b473cb0fc08c2596da7cf0e49be4b298d88cea927ac7f539f1edf228376d25";
    h = Sha3_384.init(.{});
    h.update("abc");
    h.final(out[0..]);
    try htest.assertEqual(h2, out[0..]);

    h = Sha3_384.init(.{});
    h.update("a");
    h.update("b");
    h.update("c");
    h.final(out[0..]);
    try htest.assertEqual(h2, out[0..]);
}

test "sha3-512 single" {
    const h1 = "a69f73cca23a9ac5c8b567dc185a756e97c982164fe25859e0d1dcc1475c80a615b2123af1f5f94c11e3e9402c3ac558f500199d95b6d3e301758586281dcd26";
    try htest.assertEqualHash(Sha3_512, h1, "");
    const h2 = "b751850b1a57168a5693cd924b6b096e08f621827444f70d884f5d0240d2712e10e116e9192af3c91a7ec57647e3934057340b4cf408d5a56592f8274eec53f0";
    try htest.assertEqualHash(Sha3_512, h2, "abc");
    const h3 = "afebb2ef542e6579c50cad06d2e578f9f8dd6881d7dc824d26360feebf18a4fa73e3261122948efcfd492e74e82e2189ed0fb440d187f382270cb455f21dd185";
    try htest.assertEqualHash(Sha3_512, h3, "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmnhijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu");
}

test "sha3-512 streaming" {
    var h = Sha3_512.init(.{});
    var out: [64]u8 = undefined;

    const h1 = "a69f73cca23a9ac5c8b567dc185a756e97c982164fe25859e0d1dcc1475c80a615b2123af1f5f94c11e3e9402c3ac558f500199d95b6d3e301758586281dcd26";
    h.final(out[0..]);
    try htest.assertEqual(h1, out[0..]);

    const h2 = "b751850b1a57168a5693cd924b6b096e08f621827444f70d884f5d0240d2712e10e116e9192af3c91a7ec57647e3934057340b4cf408d5a56592f8274eec53f0";
    h = Sha3_512.init(.{});
    h.update("abc");
    h.final(out[0..]);
    try htest.assertEqual(h2, out[0..]);

    h = Sha3_512.init(.{});
    h.update("a");
    h.update("b");
    h.update("c");
    h.final(out[0..]);
    try htest.assertEqual(h2, out[0..]);
}

test "sha3-512 aligned final" {
    var block = [_]u8{0} ** Sha3_512.block_length;
    var out: [Sha3_512.digest_length]u8 = undefined;

    var h = Sha3_512.init(.{});
    h.update(&block);
    h.final(out[0..]);
}

test "keccak-256 single" {
    try htest.assertEqualHash(Keccak256, "c5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470", "");
    try htest.assertEqualHash(Keccak256, "4e03657aea45a94fc7d47ba826c8d667c0d1e6e33a64a036ec44f58fa12d6c45", "abc");
    try htest.assertEqualHash(Keccak256, "f519747ed599024f3882238e5ab43960132572b7345fbeb9a90769dafd21ad67", "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmnhijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu");
}

test "keccak-512 single" {
    try htest.assertEqualHash(Keccak512, "0eab42de4c3ceb9235fc91acffe746b29c29a8c366b7c60e4e67c466f36a4304c00fa9caf9d87976ba469bcbe06713b435f091ef2769fb160cdab33d3670680e", "");
    try htest.assertEqualHash(Keccak512, "18587dc2ea106b9a1563e32b3312421ca164c7f1f07bc922a9c83d77cea3a1e5d0c69910739025372dc14ac9642629379540c17e2a65b19d77aa511a9d00bb96", "abc");
    try htest.assertEqualHash(Keccak512, "ac2fb35251825d3aa48468a9948c0a91b8256f6d97d8fa4160faff2dd9dfcc24f3f1db7a983dad13d53439ccac0b37e24037e7b95f80f59f37a2f683c4ba4682", "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmnhijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu");
}

test "SHAKE-128 single" {
    var out: [10]u8 = undefined;
    Shake128.hash("hello123", &out, .{});
    try htest.assertEqual("1b85861510bc4d8e467d", &out);
}

test "SHAKE-128 multisqueeze" {
    var out: [10]u8 = undefined;
    var h = Shake128.init(.{});
    h.update("hello123");
    h.squeeze(out[0..4]);
    h.squeeze(out[4..]);
    try htest.assertEqual("1b85861510bc4d8e467d", &out);
}

test "SHAKE-128 multisqueeze with multiple blocks" {
    var out: [100]u8 = undefined;
    var out2: [100]u8 = undefined;

    var h = Shake128.init(.{});
    h.update("hello123");
    h.squeeze(out[0..50]);
    h.squeeze(out[50..]);

    var h2 = Shake128.init(.{});
    h2.update("hello123");
    h2.squeeze(&out2);
    try std.testing.expectEqualSlices(u8, &out, &out2);
}

test "SHAKE-256 single" {
    var out: [10]u8 = undefined;
    Shake256.hash("hello123", &out, .{});
    try htest.assertEqual("ade612ba265f92de4a37", &out);
}

test "TurboSHAKE-128" {
    var out: [32]u8 = undefined;
    TurboShake(128, 0x06).hash("\xff", &out, .{});
    try htest.assertEqual("8ec9c66465ed0d4a6c35d13506718d687a25cb05c74cca1e42501abd83874a67", &out);
}

test "SHA-3 with streaming" {
    var msg: [613]u8 = [613]u8{ 0x97, 0xd1, 0x2d, 0x1a, 0x16, 0x2d, 0x36, 0x4d, 0x20, 0x62, 0x19, 0x0b, 0x14, 0x93, 0xbb, 0xf8, 0x5b, 0xea, 0x04, 0xc2, 0x61, 0x8e, 0xd6, 0x08, 0x81, 0xa1, 0x1d, 0x73, 0x27, 0x48, 0xbf, 0xa4, 0xba, 0xb1, 0x9a, 0x48, 0x9c, 0xf9, 0x9b, 0xff, 0x34, 0x48, 0xa9, 0x75, 0xea, 0xc8, 0xa3, 0x48, 0x24, 0x9d, 0x75, 0x27, 0x48, 0xec, 0x03, 0xb0, 0xbb, 0xdf, 0x33, 0x90, 0xe3, 0x93, 0xed, 0x68, 0x24, 0x39, 0x12, 0xdf, 0xea, 0xee, 0x8c, 0x9f, 0x96, 0xde, 0x42, 0x46, 0x8c, 0x2b, 0x17, 0x83, 0x36, 0xfb, 0xf4, 0xf7, 0xff, 0x79, 0xb9, 0x45, 0x41, 0xc9, 0x56, 0x1a, 0x6b, 0x0c, 0xa4, 0x1a, 0xdd, 0x6b, 0x95, 0xe8, 0x03, 0x0f, 0x09, 0x29, 0x40, 0x1b, 0xea, 0x87, 0xfa, 0xb9, 0x18, 0xa9, 0x95, 0x07, 0x7c, 0x2f, 0x7c, 0x33, 0xfb, 0xc5, 0x11, 0x5e, 0x81, 0x0e, 0xbc, 0xae, 0xec, 0xb3, 0xe1, 0x4a, 0x26, 0x56, 0xe8, 0x5b, 0x11, 0x9d, 0x37, 0x06, 0x9b, 0x34, 0x31, 0x6e, 0xa3, 0xba, 0x41, 0xbc, 0x11, 0xd8, 0xc5, 0x15, 0xc9, 0x30, 0x2c, 0x9b, 0xb6, 0x71, 0xd8, 0x7c, 0xbc, 0x38, 0x2f, 0xd5, 0xbd, 0x30, 0x96, 0xd4, 0xa3, 0x00, 0x77, 0x9d, 0x55, 0x4a, 0x33, 0x53, 0xb6, 0xb3, 0x35, 0x1b, 0xae, 0xe5, 0xdc, 0x22, 0x23, 0x85, 0x95, 0x88, 0xf9, 0x3b, 0xbf, 0x74, 0x13, 0xaa, 0xcb, 0x0a, 0x60, 0x79, 0x13, 0x79, 0xc0, 0x4a, 0x02, 0xdb, 0x1c, 0xc9, 0xff, 0x60, 0x57, 0x9a, 0x70, 0x28, 0x58, 0x60, 0xbc, 0x57, 0x07, 0xc7, 0x47, 0x1a, 0x45, 0x71, 0x76, 0x94, 0xfb, 0x05, 0xad, 0xec, 0x12, 0x29, 0x5a, 0x44, 0x6a, 0x81, 0xd9, 0xc6, 0xf0, 0xb6, 0x9b, 0x97, 0x83, 0x69, 0xfb, 0xdc, 0x0d, 0x4a, 0x67, 0xbc, 0x72, 0xf5, 0x43, 0x5e, 0x9b, 0x13, 0xf2, 0xe4, 0x6d, 0x49, 0xdb, 0x76, 0xcb, 0x42, 0x6a, 0x3c, 0x9f, 0xa1, 0xfe, 0x5e, 0xca, 0x0a, 0xfc, 0xfa, 0x39, 0x27, 0xd1, 0x3c, 0xcb, 0x9a, 0xde, 0x4c, 0x6b, 0x09, 0x8b, 0x49, 0xfd, 0x1e, 0x3d, 0x5e, 0x67, 0x7c, 0x57, 0xad, 0x90, 0xcc, 0x46, 0x5f, 0x5c, 0xae, 0x6a, 0x9c, 0xb2, 0xcd, 0x2c, 0x89, 0x78, 0xcf, 0xf1, 0x49, 0x96, 0x55, 0x1e, 0x04, 0xef, 0x0e, 0x1c, 0xde, 0x6c, 0x96, 0x51, 0x00, 0xee, 0x9a, 0x1f, 0x8d, 0x61, 0xbc, 0xeb, 0xb1, 0xa6, 0xa5, 0x21, 0x8b, 0xa7, 0xf8, 0x25, 0x41, 0x48, 0x62, 0x5b, 0x01, 0x6c, 0x7c, 0x2a, 0xe8, 0xff, 0xf9, 0xf9, 0x1f, 0xe2, 0x79, 0x2e, 0xd1, 0xff, 0xa3, 0x2e, 0x1c, 0x3a, 0x1a, 0x5d, 0x2b, 0x7b, 0x87, 0x25, 0x22, 0xa4, 0x90, 0xea, 0x26, 0x9d, 0xdd, 0x13, 0x60, 0x4c, 0x10, 0x03, 0xf6, 0x99, 0xd3, 0x21, 0x0c, 0x69, 0xc6, 0xd8, 0xc8, 0x9e, 0x94, 0x89, 0x51, 0x21, 0xe3, 0x9a, 0xcd, 0xda, 0x54, 0x72, 0x64, 0xae, 0x94, 0x79, 0x36, 0x81, 0x44, 0x14, 0x6d, 0x3a, 0x0e, 0xa6, 0x30, 0xbf, 0x95, 0x99, 0xa6, 0xf5, 0x7f, 0x4f, 0xef, 0xc6, 0x71, 0x2f, 0x36, 0x13, 0x14, 0xa2, 0x9d, 0xc2, 0x0c, 0x0d, 0x4e, 0xc0, 0x02, 0xd3, 0x6f, 0xee, 0x98, 0x5e, 0x24, 0x31, 0x74, 0x11, 0x96, 0x6e, 0x43, 0x57, 0xe8, 0x8e, 0xa0, 0x8d, 0x3d, 0x79, 0x38, 0x20, 0xc2, 0x0f, 0xb4, 0x75, 0x99, 0x3b, 0xb1, 0xf0, 0xe8, 0xe1, 0xda, 0xf9, 0xd4, 0xe6, 0xd6, 0xf4, 0x8a, 0x32, 0x4a, 0x4a, 0x25, 0xa8, 0xd9, 0x60, 0xd6, 0x33, 0x31, 0x97, 0xb9, 0xb6, 0xed, 0x5f, 0xfc, 0x15, 0xbd, 0x13, 0xc0, 0x3a, 0x3f, 0x1f, 0x2d, 0x09, 0x1d, 0xeb, 0x69, 0x6a, 0xfe, 0xd7, 0x95, 0x3e, 0x8a, 0x4e, 0xe1, 0x6e, 0x61, 0xb2, 0x6c, 0xe3, 0x2b, 0x70, 0x60, 0x7e, 0x8c, 0xe4, 0xdd, 0x27, 0x30, 0x7e, 0x0d, 0xc7, 0xb7, 0x9a, 0x1a, 0x3c, 0xcc, 0xa7, 0x22, 0x77, 0x14, 0x05, 0x50, 0x57, 0x31, 0x1b, 0xc8, 0xbf, 0xce, 0x52, 0xaf, 0x9c, 0x8e, 0x10, 0x2e, 0xd2, 0x16, 0xb6, 0x6e, 0x43, 0x10, 0xaf, 0x8b, 0xde, 0x1d, 0x60, 0xb2, 0x7d, 0xe6, 0x2f, 0x08, 0x10, 0x12, 0x7e, 0xb4, 0x76, 0x45, 0xb6, 0xd8, 0x9b, 0x26, 0x40, 0xa1, 0x63, 0x5c, 0x7a, 0x2a, 0xb1, 0x8c, 0xd6, 0xa4, 0x6f, 0x5a, 0xae, 0x33, 0x7e, 0x6d, 0x71, 0xf5, 0xc8, 0x6d, 0x80, 0x1c, 0x35, 0xfc, 0x3f, 0xc1, 0xa6, 0xc6, 0x1a, 0x15, 0x04, 0x6d, 0x76, 0x38, 0x32, 0x95, 0xb2, 0x51, 0x1a, 0xe9, 0x3e, 0x89, 0x9f, 0x0c, 0x79 };
    var out: [Sha3_256.digest_length]u8 = undefined;

    Sha3_256.hash(&msg, &out, .{});
    try htest.assertEqual("5780048dfa381a1d01c747906e4a08711dd34fd712ecd7c6801dd2b38fd81a89", &out);

    var h = Sha3_256.init(.{});
    h.update(msg[0..64]);
    h.update(msg[64..613]);
    h.final(&out);
    try htest.assertEqual("5780048dfa381a1d01c747906e4a08711dd34fd712ecd7c6801dd2b38fd81a89", &out);
}

test "cSHAKE-128 with no context nor function name" {
    var out: [32]u8 = undefined;
    CShake128.hash("hello123", &out, .{});
    try htest.assertEqual("1b85861510bc4d8e467d6f8a92270533cbaa7ba5e06c2d2a502854bac468b8b9", &out);
}

test "cSHAKE-128 with context" {
    var out: [32]u8 = undefined;
    CShake128.hash("hello123", &out, .{ .context = "custom" });
    try htest.assertEqual("7509fa13a6bd3e38ad5c6fac042142c233996e40ebffc86c276f108b3b19cc6a", &out);
}

test "cSHAKE-128 with context and function" {
    var out: [32]u8 = undefined;
    CShake(128, "function").hash("hello123", &out, .{ .context = "custom" });
    try htest.assertEqual("ad7f4d7db2d96587fcd5047c65d37c368f5366e3afac60bb9b66b0bb95dfb675", &out);
}

test "cSHAKE-256" {
    var out: [32]u8 = undefined;
    CShake256.hash("hello123", &out, .{ .context = "custom" });
    try htest.assertEqual("dabe027eb1a6cbe3a0542d0560eb4e6b39146dd72ae1bf89c970a61bd93b1813", &out);
}

test "KMAC-128 with empty key and message" {
    var out: [KMac128.mac_length]u8 = undefined;
    const key = "";
    KMac128.create(&out, "", key);
    try htest.assertEqual("5c135c615152fb4d9784dd1155f9b6034e013fd77165c327dfa4d36701983ef7", &out);
}

test "KMAC-128" {
    var out: [KMac128.mac_length]u8 = undefined;
    const key = "A KMAC secret key";
    KMac128.create(&out, "hello123", key);
    try htest.assertEqual("1fa1c0d761129a83f9a4299ca137674de8373a3cc437799ae4c129e651627f8e", &out);
}

test "KMAC-128 with a customization string" {
    var out: [KMac128.mac_length]u8 = undefined;
    const key = "A KMAC secret key";
    KMac128.createWithOptions(&out, "hello123", key, .{ .context = "custom" });
    try htest.assertEqual("c58c6d42dc00a27dfa8e7e08f8c9307cecb5d662ddb11b6c36057fc2e0e068ba", &out);
}

test "KMACXOF-128" {
    const key = "A KMAC secret key";
    var xof = KMac128.init(key);
    xof.update("hello123");
    var out: [50]u8 = undefined;
    xof.squeeze(&out);
    try htest.assertEqual("628c2fb870d294b3673ac82d9f0d651aae6a5bb8084ea8cd8343cb888d075b9053173200a71f301141069c3c0322527981f7", &out);
    xof.squeeze(&out);
    try htest.assertEqual("7b638e178cfdac5727a4ea7694efaa967a65a1d0034501855acff506b4158d187d5a18d668e67b43f2abf61144b20ed4c09f", &out);
}

test "KMACXOF-256" {
    const key = "A KMAC secret key";
    var xof = KMac256.init(key);
    xof.update("hello123");
    var out: [50]u8 = undefined;
    xof.squeeze(&out);
    try htest.assertEqual("23fc644bc2655ba6fde7b7c11f2804f22e8d8c6bd7db856268bf3370ce2362703f6c7e91916a1b8c116e60edfbcb25613054", &out);
    xof.squeeze(&out);
    try htest.assertEqual("ff97251020ff255ee65a1c1f5f78ebe904f61211c39f973f82fbce2b196b9f51c2cb12afe51549a0f1eaf7954e657ba11af3", &out);
}

test "TupleHash-128" {
    var st = TupleHash128.init();
    st.update("hello");
    st.update("123");
    var out: [32]u8 = undefined;
    st.final(&out);
    try htest.assertEqual("3938d49ade8ec0f0c305ac63497b2d2e8b2f650714f9667cc41816b1c11ffd20", &out);
}

test "TupleHash-256" {
    var st = TupleHash256.init();
    st.update("hello");
    st.update("123");
    var out: [64]u8 = undefined;
    st.final(&out);
    try htest.assertEqual("2dca563c2882f2ba4f46a441a4c5e13fb97150d1436fe99c7e4e43a2d20d0f1cd3d38483bde4a966930606dfa6c61c4ca6400aeedfb474d1bf0d7f6a70968289", &out);
}