structstd.crypto.25519.edwards25519.Edwards25519[src]

Group operations over Edwards25519.

Types

Type Functionelligator2[src]

Elligator2 map - Returns Montgomery affine coordinates

Parameters

r: Fe

Source Code

Source code
pub fn elligator2(r: Fe) struct { x: Fe, y: Fe, not_square: bool } {
    const rr2 = r.sq2().add(Fe.one).invert();
    var x = rr2.mul32(Fe.edwards25519a_32).neg(); // x=x1
    var x2 = x.sq();
    const x3 = x2.mul(x);
    x2 = x2.mul32(Fe.edwards25519a_32); // x2 = A*x1^2
    const gx1 = x3.add(x).add(x2); // gx1 = x1^3 + A*x1^2 + x1
    const not_square = !gx1.isSquare();

    // gx1 not a square => x = -x1-A
    x.cMov(x.neg(), @intFromBool(not_square));
    x2 = Fe.zero;
    x2.cMov(Fe.edwards25519a, @intFromBool(not_square));
    x = x.sub(x2);

    // We have y = sqrt(gx1) or sqrt(gx2) with gx2 = gx1*(A+x1)/(-x1)
    // but it is about as fast to just recompute y from the curve equation.
    const y = xmontToYmont(x) catch unreachable;
    return .{ .x = x, .y = y, .not_square = not_square };
}

Fields

x: Fe
y: Fe
z: Fe
t: Fe
is_base: bool = false

Values

Constantencoded_length[src]

Length in bytes of a compressed representation of a point.

Source Code

Source code
pub const encoded_length: usize = 32

ConstantbasePoint[src]

The edwards25519 base point.

Source Code

Source code
pub const basePoint = Edwards25519{
    .x = Fe{ .limbs = .{ 1738742601995546, 1146398526822698, 2070867633025821, 562264141797630, 587772402128613 } },
    .y = Fe{ .limbs = .{ 1801439850948184, 1351079888211148, 450359962737049, 900719925474099, 1801439850948198 } },
    .z = Fe.one,
    .t = Fe{ .limbs = .{ 1841354044333475, 16398895984059, 755974180946558, 900171276175154, 1821297809914039 } },
    .is_base = true,
}

ConstantidentityElement[src]

Source Code

Source code
pub const identityElement = Edwards25519{ .x = Fe.zero, .y = Fe.one, .z = Fe.one, .t = Fe.zero }

Functions

FunctionfromBytes[src]

pub fn fromBytes(s: [encoded_length]u8) EncodingError!Edwards25519

Decode an Edwards25519 point from its compressed (Y+sign) coordinates.

Parameters

Source Code

Source code
pub fn fromBytes(s: [encoded_length]u8) EncodingError!Edwards25519 {
    const z = Fe.one;
    const y = Fe.fromBytes(s);
    var u = y.sq();
    var v = u.mul(Fe.edwards25519d);
    u = u.sub(z);
    v = v.add(z);
    var x = u.mul(v).pow2523().mul(u);
    const vxx = x.sq().mul(v);
    const has_m_root = vxx.sub(u).isZero();
    const has_p_root = vxx.add(u).isZero();
    if ((@intFromBool(has_m_root) | @intFromBool(has_p_root)) == 0) { // best-effort to avoid two conditional branches
        return error.InvalidEncoding;
    }
    x.cMov(x.mul(Fe.sqrtm1), 1 - @intFromBool(has_m_root));
    x.cMov(x.neg(), @intFromBool(x.isNegative()) ^ (s[31] >> 7));
    const t = x.mul(y);
    return Edwards25519{ .x = x, .y = y, .z = z, .t = t };
}

FunctiontoBytes[src]

pub fn toBytes(p: Edwards25519) [encoded_length]u8

Encode an Edwards25519 point.

Parameters

Source Code

Source code
pub fn toBytes(p: Edwards25519) [encoded_length]u8 {
    const zi = p.z.invert();
    var s = p.y.mul(zi).toBytes();
    s[31] ^= @as(u8, @intFromBool(p.x.mul(zi).isNegative())) << 7;
    return s;
}

FunctionrejectNonCanonical[src]

pub fn rejectNonCanonical(s: [32]u8) NonCanonicalError!void

Check that the encoding of a point is canonical.

Parameters

s: [32]u8

Source Code

Source code
pub fn rejectNonCanonical(s: [32]u8) NonCanonicalError!void {
    return Fe.rejectNonCanonical(s, true);
}

FunctionrejectIdentity[src]

pub fn rejectIdentity(p: Edwards25519) IdentityElementError!void

Reject the neutral element.

Parameters

Source Code

Source code
pub fn rejectIdentity(p: Edwards25519) IdentityElementError!void {
    if (p.x.isZero()) {
        return error.IdentityElement;
    }
}

FunctionrejectUnexpectedSubgroup[src]

pub fn rejectUnexpectedSubgroup(p: Edwards25519) (WeakPublicKeyError || UnexpectedSubgroupError)!void

Reject a point if it is not in the prime order subgroup generated by the standard base point.

If the point is not in the main subgroup:

  • WeakPublicKeyError is returned if the point belongs to a low-order subgroup.
  • UnexpectedSubgroupError is returned otherwise.

Parameters

Source Code

Source code
pub fn rejectUnexpectedSubgroup(p: Edwards25519) (WeakPublicKeyError || UnexpectedSubgroupError)!void {
    try p.rejectLowOrder();

    // Multiply p by the order of subgroup - This is a prime order group, so the result should be the neutral element.
    const _10 = p.dbl();
    const _11 = p.add(_10);
    const _100 = p.add(_11);
    const _110 = _10.add(_100);
    const _1000 = _10.add(_110);
    const _1011 = _11.add(_1000);
    const _10000 = _1000.dbl();
    const _100000 = _10000.dbl();
    const _100110 = _110.add(_100000);
    const _1000000 = _100000.dbl();
    const _1010000 = _10000.add(_1000000);
    const _1010011 = _11.add(_1010000);
    const _1100011 = _10000.add(_1010011);
    const _1100111 = _100.add(_1100011);
    const _1101011 = _100.add(_1100111);
    const _10010011 = _1000000.add(_1010011);
    const _10010111 = _100.add(_10010011);
    const _10111101 = _100110.add(_10010111);
    const _11010011 = _1000000.add(_10010011);
    const _11100111 = _1010000.add(_10010111);
    const _11101101 = _110.add(_11100111);
    const _11110101 = _1000.add(_11101101);
    const q = ((_11110101.add(((((_1101011.add(((((_10.add(((_1011.add(_11110101)).shift(126)
        .add(_1010011)).shift(9).add(_11110101))).shift(7).add(_1100111)).shift(9).add(_11110101).shift(11)
        .add(_10111101)).shift(8).add(_11100111)).shift(9))).shift(6).add(_1011)).shift(14).add(_10010011).shift(10)
        .add(_1100011)).shift(9).add(_10010111)).shift(10))).shift(8).add(_11010011)).shift(8).add(_11101101);
    q.rejectIdentity() catch return;
    return error.UnexpectedSubgroup;
}

FunctionclearCofactor[src]

pub fn clearCofactor(p: Edwards25519) Edwards25519

Multiply a point by the cofactor

Parameters

Source Code

Source code
pub fn clearCofactor(p: Edwards25519) Edwards25519 {
    return p.dbl().dbl().dbl();
}

FunctionrejectLowOrder[src]

pub fn rejectLowOrder(p: Edwards25519) WeakPublicKeyError!void

Check that the point does not generate a low-order group. Return a WeakPublicKey error if it does.

Parameters

Source Code

Source code
pub fn rejectLowOrder(p: Edwards25519) WeakPublicKeyError!void {
    const zi = p.z.invert();
    const x = p.x.mul(zi);
    const y = p.y.mul(zi);
    const x_neg = x.neg();
    const iy = Fe.sqrtm1.mul(y);
    if (x.isZero() or y.isZero() or iy.equivalent(x) or iy.equivalent(x_neg)) {
        return error.WeakPublicKey;
    }
}

Functionneg[src]

pub inline fn neg(p: Edwards25519) Edwards25519

Flip the sign of the X coordinate.

Parameters

Source Code

Source code
pub inline fn neg(p: Edwards25519) Edwards25519 {
    return .{ .x = p.x.neg(), .y = p.y, .z = p.z, .t = p.t.neg() };
}

Functiondbl[src]

pub fn dbl(p: Edwards25519) Edwards25519

Double an Edwards25519 point.

Parameters

Source Code

Source code
pub fn dbl(p: Edwards25519) Edwards25519 {
    const t0 = p.x.add(p.y).sq();
    var x = p.x.sq();
    var z = p.y.sq();
    const y = z.add(x);
    z = z.sub(x);
    x = t0.sub(y);
    const t = p.z.sq2().sub(z);
    return .{
        .x = x.mul(t),
        .y = y.mul(z),
        .z = z.mul(t),
        .t = x.mul(y),
    };
}

Functionadd[src]

Add two Edwards25519 points.

Parameters

Source Code

Source code
pub fn add(p: Edwards25519, q: Edwards25519) Edwards25519 {
    const a = p.y.sub(p.x).mul(q.y.sub(q.x));
    const b = p.x.add(p.y).mul(q.x.add(q.y));
    const c = p.t.mul(q.t).mul(Fe.edwards25519d2);
    var d = p.z.mul(q.z);
    d = d.add(d);
    const x = b.sub(a);
    const y = b.add(a);
    const z = d.add(c);
    const t = d.sub(c);
    return .{
        .x = x.mul(t),
        .y = y.mul(z),
        .z = z.mul(t),
        .t = x.mul(y),
    };
}

Functionsub[src]

Subtract two Edwards25519 points.

Parameters

Source Code

Source code
pub fn sub(p: Edwards25519, q: Edwards25519) Edwards25519 {
    return p.add(q.neg());
}

Functionmul[src]

Multiply an Edwards25519 point by a scalar without clamping it. Return error.WeakPublicKey if the base generates a small-order group, and error.IdentityElement if the result is the identity element.

Parameters

s: [32]u8

Source Code

Source code
pub fn mul(p: Edwards25519, s: [32]u8) (IdentityElementError || WeakPublicKeyError)!Edwards25519 {
    const pc = if (p.is_base) basePointPc else pc: {
        const xpc = precompute(p, 15);
        xpc[4].rejectIdentity() catch return error.WeakPublicKey;
        break :pc xpc;
    };
    return pcMul16(&pc, s, false);
}

FunctionmulPublic[src]

Multiply an Edwards25519 point by a PUBLIC scalar IN VARIABLE TIME This can be used for signature verification.

Parameters

s: [32]u8

Source Code

Source code
pub fn mulPublic(p: Edwards25519, s: [32]u8) (IdentityElementError || WeakPublicKeyError)!Edwards25519 {
    if (p.is_base) {
        return pcMul16(&basePointPc, s, true);
    } else {
        const pc = precompute(p, 8);
        pc[4].rejectIdentity() catch return error.WeakPublicKey;
        return pcMul(&pc, s, true);
    }
}

FunctionmulDoubleBasePublic[src]

pub fn mulDoubleBasePublic(p1: Edwards25519, s1: [32]u8, p2: Edwards25519, s2: [32]u8) (IdentityElementError || WeakPublicKeyError)!Edwards25519

Double-base multiplication of public parameters - Compute (p1s1)+(p2s2) IN VARIABLE TIME This can be used for signature verification.

Parameters

s1: [32]u8
s2: [32]u8

Source Code

Source code
pub fn mulDoubleBasePublic(p1: Edwards25519, s1: [32]u8, p2: Edwards25519, s2: [32]u8) (IdentityElementError || WeakPublicKeyError)!Edwards25519 {
    var pc1_array: [9]Edwards25519 = undefined;
    const pc1 = if (p1.is_base) basePointPc[0..9] else pc: {
        pc1_array = precompute(p1, 8);
        pc1_array[4].rejectIdentity() catch return error.WeakPublicKey;
        break :pc &pc1_array;
    };
    var pc2_array: [9]Edwards25519 = undefined;
    const pc2 = if (p2.is_base) basePointPc[0..9] else pc: {
        pc2_array = precompute(p2, 8);
        pc2_array[4].rejectIdentity() catch return error.WeakPublicKey;
        break :pc &pc2_array;
    };
    const e1 = slide(s1);
    const e2 = slide(s2);
    var q = Edwards25519.identityElement;
    var pos: usize = 2 * 32 - 1;
    while (true) : (pos -= 1) {
        const slot1 = e1[pos];
        if (slot1 > 0) {
            q = q.add(pc1[@as(usize, @intCast(slot1))]);
        } else if (slot1 < 0) {
            q = q.sub(pc1[@as(usize, @intCast(-slot1))]);
        }
        const slot2 = e2[pos];
        if (slot2 > 0) {
            q = q.add(pc2[@as(usize, @intCast(slot2))]);
        } else if (slot2 < 0) {
            q = q.sub(pc2[@as(usize, @intCast(-slot2))]);
        }
        if (pos == 0) break;
        q = q.dbl().dbl().dbl().dbl();
    }
    try q.rejectIdentity();
    return q;
}

FunctionmulMulti[src]

pub fn mulMulti(comptime count: usize, ps: [count]Edwards25519, ss: [count][32]u8) (IdentityElementError || WeakPublicKeyError)!Edwards25519

Multiscalar multiplication IN VARIABLE TIME for public data Computes ps0ss0 + ps1ss1 + ps2*ss2... faster than doing many of these operations individually

Parameters

count: usize
ps: [count]Edwards25519
ss: [count][32]u8

Source Code

Source code
pub fn mulMulti(comptime count: usize, ps: [count]Edwards25519, ss: [count][32]u8) (IdentityElementError || WeakPublicKeyError)!Edwards25519 {
    var pcs: [count][9]Edwards25519 = undefined;

    var bpc: [9]Edwards25519 = undefined;
    @memcpy(&bpc, basePointPc[0..bpc.len]);

    for (ps, 0..) |p, i| {
        if (p.is_base) {
            pcs[i] = bpc;
        } else {
            pcs[i] = precompute(p, 8);
            pcs[i][4].rejectIdentity() catch return error.WeakPublicKey;
        }
    }
    var es: [count][2 * 32]i8 = undefined;
    for (ss, 0..) |s, i| {
        es[i] = slide(s);
    }
    var q = Edwards25519.identityElement;
    var pos: usize = 2 * 32 - 1;
    while (true) : (pos -= 1) {
        for (es, 0..) |e, i| {
            const slot = e[pos];
            if (slot > 0) {
                q = q.add(pcs[i][@as(usize, @intCast(slot))]);
            } else if (slot < 0) {
                q = q.sub(pcs[i][@as(usize, @intCast(-slot))]);
            }
        }
        if (pos == 0) break;
        q = q.dbl().dbl().dbl().dbl();
    }
    try q.rejectIdentity();
    return q;
}

FunctionclampedMul[src]

Multiply an Edwards25519 point by a scalar after "clamping" it. Clamping forces the scalar to be a multiple of the cofactor in order to prevent small subgroups attacks. This is strongly recommended for DH operations. Return error.WeakPublicKey if the resulting point is the identity element.

Parameters

s: [32]u8

Source Code

Source code
pub fn clampedMul(p: Edwards25519, s: [32]u8) (IdentityElementError || WeakPublicKeyError)!Edwards25519 {
    var t: [32]u8 = s;
    scalar.clamp(&t);
    return mul(p, t);
}

FunctionfromHash[src]

pub fn fromHash(h: [64]u8) Edwards25519

Map a 64-bit hash into an Edwards25519 point

Parameters

h: [64]u8

Source Code

Source code
pub fn fromHash(h: [64]u8) Edwards25519 {
    const fe_f = Fe.fromBytes64(h);
    var elr = elligator2(fe_f);

    const y_sign = !elr.not_square;
    const y_neg = elr.y.neg();
    elr.y.cMov(y_neg, @intFromBool(elr.y.isNegative()) ^ @intFromBool(y_sign));
    return montToEd(elr.x, elr.y).clearCofactor();
}

FunctionfromString[src]

pub fn fromString(comptime random_oracle: bool, ctx: []const u8, s: []const u8) Edwards25519

Hash a context ctx and a string s into an Edwards25519 point

This function implements the edwards25519_XMD:SHA-512_ELL2_RO_ and edwards25519_XMD:SHA-512_ELL2_NU_ methods from the "Hashing to Elliptic Curves" standard document.

Although not strictly required by the standard, it is recommended to avoid NUL characters in the context in order to be compatible with other implementations.

Parameters

random_oracle: bool
ctx: []const u8
s: []const u8

Source Code

Source code
pub fn fromString(comptime random_oracle: bool, ctx: []const u8, s: []const u8) Edwards25519 {
    if (random_oracle) {
        const px = stringToPoints(2, ctx, s);
        return px[0].add(px[1]);
    } else {
        return stringToPoints(1, ctx, s)[0];
    }
}

FunctionfromUniform[src]

pub fn fromUniform(r: [32]u8) Edwards25519

Map a 32 bit uniform bit string into an edwards25519 point

Parameters

r: [32]u8

Source Code

Source code
pub fn fromUniform(r: [32]u8) Edwards25519 {
    var s = r;
    const x_sign = s[31] >> 7;
    s[31] &= 0x7f;
    const elr = elligator2(Fe.fromBytes(s));
    var p = montToEd(elr.x, elr.y);
    const p_neg = p.neg();
    p.cMov(p_neg, @intFromBool(p.x.isNegative()) ^ x_sign);
    return p.clearCofactor();
}

Source Code

Source code
pub const Edwards25519 = struct {
    /// The underlying prime field.
    pub const Fe = @import("field.zig").Fe;
    /// Field arithmetic mod the order of the main subgroup.
    pub const scalar = @import("scalar.zig");
    /// Length in bytes of a compressed representation of a point.
    pub const encoded_length: usize = 32;

    x: Fe,
    y: Fe,
    z: Fe,
    t: Fe,

    is_base: bool = false,

    /// Decode an Edwards25519 point from its compressed (Y+sign) coordinates.
    pub fn fromBytes(s: [encoded_length]u8) EncodingError!Edwards25519 {
        const z = Fe.one;
        const y = Fe.fromBytes(s);
        var u = y.sq();
        var v = u.mul(Fe.edwards25519d);
        u = u.sub(z);
        v = v.add(z);
        var x = u.mul(v).pow2523().mul(u);
        const vxx = x.sq().mul(v);
        const has_m_root = vxx.sub(u).isZero();
        const has_p_root = vxx.add(u).isZero();
        if ((@intFromBool(has_m_root) | @intFromBool(has_p_root)) == 0) { // best-effort to avoid two conditional branches
            return error.InvalidEncoding;
        }
        x.cMov(x.mul(Fe.sqrtm1), 1 - @intFromBool(has_m_root));
        x.cMov(x.neg(), @intFromBool(x.isNegative()) ^ (s[31] >> 7));
        const t = x.mul(y);
        return Edwards25519{ .x = x, .y = y, .z = z, .t = t };
    }

    /// Encode an Edwards25519 point.
    pub fn toBytes(p: Edwards25519) [encoded_length]u8 {
        const zi = p.z.invert();
        var s = p.y.mul(zi).toBytes();
        s[31] ^= @as(u8, @intFromBool(p.x.mul(zi).isNegative())) << 7;
        return s;
    }

    /// Check that the encoding of a point is canonical.
    pub fn rejectNonCanonical(s: [32]u8) NonCanonicalError!void {
        return Fe.rejectNonCanonical(s, true);
    }

    /// The edwards25519 base point.
    pub const basePoint = Edwards25519{
        .x = Fe{ .limbs = .{ 1738742601995546, 1146398526822698, 2070867633025821, 562264141797630, 587772402128613 } },
        .y = Fe{ .limbs = .{ 1801439850948184, 1351079888211148, 450359962737049, 900719925474099, 1801439850948198 } },
        .z = Fe.one,
        .t = Fe{ .limbs = .{ 1841354044333475, 16398895984059, 755974180946558, 900171276175154, 1821297809914039 } },
        .is_base = true,
    };

    pub const identityElement = Edwards25519{ .x = Fe.zero, .y = Fe.one, .z = Fe.one, .t = Fe.zero };

    /// Reject the neutral element.
    pub fn rejectIdentity(p: Edwards25519) IdentityElementError!void {
        if (p.x.isZero()) {
            return error.IdentityElement;
        }
    }

    /// Reject a point if it is not in the prime order subgroup generated by the standard base point.
    ///
    /// If the point is not in the main subgroup:
    ///
    /// - `WeakPublicKeyError` is returned if the point belongs to a low-order subgroup.
    /// - `UnexpectedSubgroupError` is returned otherwise.
    pub fn rejectUnexpectedSubgroup(p: Edwards25519) (WeakPublicKeyError || UnexpectedSubgroupError)!void {
        try p.rejectLowOrder();

        // Multiply p by the order of subgroup - This is a prime order group, so the result should be the neutral element.
        const _10 = p.dbl();
        const _11 = p.add(_10);
        const _100 = p.add(_11);
        const _110 = _10.add(_100);
        const _1000 = _10.add(_110);
        const _1011 = _11.add(_1000);
        const _10000 = _1000.dbl();
        const _100000 = _10000.dbl();
        const _100110 = _110.add(_100000);
        const _1000000 = _100000.dbl();
        const _1010000 = _10000.add(_1000000);
        const _1010011 = _11.add(_1010000);
        const _1100011 = _10000.add(_1010011);
        const _1100111 = _100.add(_1100011);
        const _1101011 = _100.add(_1100111);
        const _10010011 = _1000000.add(_1010011);
        const _10010111 = _100.add(_10010011);
        const _10111101 = _100110.add(_10010111);
        const _11010011 = _1000000.add(_10010011);
        const _11100111 = _1010000.add(_10010111);
        const _11101101 = _110.add(_11100111);
        const _11110101 = _1000.add(_11101101);
        const q = ((_11110101.add(((((_1101011.add(((((_10.add(((_1011.add(_11110101)).shift(126)
            .add(_1010011)).shift(9).add(_11110101))).shift(7).add(_1100111)).shift(9).add(_11110101).shift(11)
            .add(_10111101)).shift(8).add(_11100111)).shift(9))).shift(6).add(_1011)).shift(14).add(_10010011).shift(10)
            .add(_1100011)).shift(9).add(_10010111)).shift(10))).shift(8).add(_11010011)).shift(8).add(_11101101);
        q.rejectIdentity() catch return;
        return error.UnexpectedSubgroup;
    }

    /// Multiply a point by the cofactor
    pub fn clearCofactor(p: Edwards25519) Edwards25519 {
        return p.dbl().dbl().dbl();
    }

    /// Check that the point does not generate a low-order group.
    /// Return a `WeakPublicKey` error if it does.
    pub fn rejectLowOrder(p: Edwards25519) WeakPublicKeyError!void {
        const zi = p.z.invert();
        const x = p.x.mul(zi);
        const y = p.y.mul(zi);
        const x_neg = x.neg();
        const iy = Fe.sqrtm1.mul(y);
        if (x.isZero() or y.isZero() or iy.equivalent(x) or iy.equivalent(x_neg)) {
            return error.WeakPublicKey;
        }
    }

    /// Flip the sign of the X coordinate.
    pub inline fn neg(p: Edwards25519) Edwards25519 {
        return .{ .x = p.x.neg(), .y = p.y, .z = p.z, .t = p.t.neg() };
    }

    /// Double an Edwards25519 point.
    pub fn dbl(p: Edwards25519) Edwards25519 {
        const t0 = p.x.add(p.y).sq();
        var x = p.x.sq();
        var z = p.y.sq();
        const y = z.add(x);
        z = z.sub(x);
        x = t0.sub(y);
        const t = p.z.sq2().sub(z);
        return .{
            .x = x.mul(t),
            .y = y.mul(z),
            .z = z.mul(t),
            .t = x.mul(y),
        };
    }

    /// Add two Edwards25519 points.
    pub fn add(p: Edwards25519, q: Edwards25519) Edwards25519 {
        const a = p.y.sub(p.x).mul(q.y.sub(q.x));
        const b = p.x.add(p.y).mul(q.x.add(q.y));
        const c = p.t.mul(q.t).mul(Fe.edwards25519d2);
        var d = p.z.mul(q.z);
        d = d.add(d);
        const x = b.sub(a);
        const y = b.add(a);
        const z = d.add(c);
        const t = d.sub(c);
        return .{
            .x = x.mul(t),
            .y = y.mul(z),
            .z = z.mul(t),
            .t = x.mul(y),
        };
    }

    /// Subtract two Edwards25519 points.
    pub fn sub(p: Edwards25519, q: Edwards25519) Edwards25519 {
        return p.add(q.neg());
    }

    /// Double a point `n` times.
    fn shift(p: Edwards25519, n: comptime_int) Edwards25519 {
        var q = p;
        for (0..n) |_| q = q.dbl();
        return q;
    }

    inline fn cMov(p: *Edwards25519, a: Edwards25519, c: u64) void {
        p.x.cMov(a.x, c);
        p.y.cMov(a.y, c);
        p.z.cMov(a.z, c);
        p.t.cMov(a.t, c);
    }

    inline fn pcSelect(comptime n: usize, pc: *const [n]Edwards25519, b: u8) Edwards25519 {
        var t = Edwards25519.identityElement;
        comptime var i: u8 = 1;
        inline while (i < pc.len) : (i += 1) {
            t.cMov(pc[i], ((@as(usize, b ^ i) -% 1) >> 8) & 1);
        }
        return t;
    }

    fn slide(s: [32]u8) [2 * 32]i8 {
        const reduced = if ((s[s.len - 1] & 0x80) == 0) s else scalar.reduce(s);
        var e: [2 * 32]i8 = undefined;
        for (reduced, 0..) |x, i| {
            e[i * 2 + 0] = @as(i8, @as(u4, @truncate(x)));
            e[i * 2 + 1] = @as(i8, @as(u4, @truncate(x >> 4)));
        }
        // Now, e[0..63] is between 0 and 15, e[63] is between 0 and 7
        var carry: i8 = 0;
        for (e[0..63]) |*x| {
            x.* += carry;
            carry = (x.* + 8) >> 4;
            x.* -= carry * 16;
        }
        e[63] += carry;
        // Now, e[*] is between -8 and 8, including e[63]
        return e;
    }

    // Scalar multiplication with a 4-bit window and the first 8 multiples.
    // This requires the scalar to be converted to non-adjacent form.
    // Based on real-world benchmarks, we only use this for multi-scalar multiplication.
    // NAF could be useful to half the size of precomputation tables, but we intentionally
    // avoid these to keep the standard library lightweight.
    fn pcMul(pc: *const [9]Edwards25519, s: [32]u8, comptime vartime: bool) IdentityElementError!Edwards25519 {
        std.debug.assert(vartime);
        const e = slide(s);
        var q = Edwards25519.identityElement;
        var pos: usize = 2 * 32 - 1;
        while (true) : (pos -= 1) {
            const slot = e[pos];
            if (slot > 0) {
                q = q.add(pc[@as(usize, @intCast(slot))]);
            } else if (slot < 0) {
                q = q.sub(pc[@as(usize, @intCast(-slot))]);
            }
            if (pos == 0) break;
            q = q.dbl().dbl().dbl().dbl();
        }
        try q.rejectIdentity();
        return q;
    }

    // Scalar multiplication with a 4-bit window and the first 15 multiples.
    fn pcMul16(pc: *const [16]Edwards25519, s: [32]u8, comptime vartime: bool) IdentityElementError!Edwards25519 {
        var q = Edwards25519.identityElement;
        var pos: usize = 252;
        while (true) : (pos -= 4) {
            const slot: u4 = @truncate((s[pos >> 3] >> @as(u3, @truncate(pos))));
            if (vartime) {
                if (slot != 0) {
                    q = q.add(pc[slot]);
                }
            } else {
                q = q.add(pcSelect(16, pc, slot));
            }
            if (pos == 0) break;
            q = q.dbl().dbl().dbl().dbl();
        }
        try q.rejectIdentity();
        return q;
    }

    fn precompute(p: Edwards25519, comptime count: usize) [1 + count]Edwards25519 {
        var pc: [1 + count]Edwards25519 = undefined;
        pc[0] = Edwards25519.identityElement;
        pc[1] = p;
        var i: usize = 2;
        while (i <= count) : (i += 1) {
            pc[i] = if (i % 2 == 0) pc[i / 2].dbl() else pc[i - 1].add(p);
        }
        return pc;
    }

    const basePointPc = pc: {
        @setEvalBranchQuota(10000);
        break :pc precompute(Edwards25519.basePoint, 15);
    };

    /// Multiply an Edwards25519 point by a scalar without clamping it.
    /// Return error.WeakPublicKey if the base generates a small-order group,
    /// and error.IdentityElement if the result is the identity element.
    pub fn mul(p: Edwards25519, s: [32]u8) (IdentityElementError || WeakPublicKeyError)!Edwards25519 {
        const pc = if (p.is_base) basePointPc else pc: {
            const xpc = precompute(p, 15);
            xpc[4].rejectIdentity() catch return error.WeakPublicKey;
            break :pc xpc;
        };
        return pcMul16(&pc, s, false);
    }

    /// Multiply an Edwards25519 point by a *PUBLIC* scalar *IN VARIABLE TIME*
    /// This can be used for signature verification.
    pub fn mulPublic(p: Edwards25519, s: [32]u8) (IdentityElementError || WeakPublicKeyError)!Edwards25519 {
        if (p.is_base) {
            return pcMul16(&basePointPc, s, true);
        } else {
            const pc = precompute(p, 8);
            pc[4].rejectIdentity() catch return error.WeakPublicKey;
            return pcMul(&pc, s, true);
        }
    }

    /// Double-base multiplication of public parameters - Compute (p1*s1)+(p2*s2) *IN VARIABLE TIME*
    /// This can be used for signature verification.
    pub fn mulDoubleBasePublic(p1: Edwards25519, s1: [32]u8, p2: Edwards25519, s2: [32]u8) (IdentityElementError || WeakPublicKeyError)!Edwards25519 {
        var pc1_array: [9]Edwards25519 = undefined;
        const pc1 = if (p1.is_base) basePointPc[0..9] else pc: {
            pc1_array = precompute(p1, 8);
            pc1_array[4].rejectIdentity() catch return error.WeakPublicKey;
            break :pc &pc1_array;
        };
        var pc2_array: [9]Edwards25519 = undefined;
        const pc2 = if (p2.is_base) basePointPc[0..9] else pc: {
            pc2_array = precompute(p2, 8);
            pc2_array[4].rejectIdentity() catch return error.WeakPublicKey;
            break :pc &pc2_array;
        };
        const e1 = slide(s1);
        const e2 = slide(s2);
        var q = Edwards25519.identityElement;
        var pos: usize = 2 * 32 - 1;
        while (true) : (pos -= 1) {
            const slot1 = e1[pos];
            if (slot1 > 0) {
                q = q.add(pc1[@as(usize, @intCast(slot1))]);
            } else if (slot1 < 0) {
                q = q.sub(pc1[@as(usize, @intCast(-slot1))]);
            }
            const slot2 = e2[pos];
            if (slot2 > 0) {
                q = q.add(pc2[@as(usize, @intCast(slot2))]);
            } else if (slot2 < 0) {
                q = q.sub(pc2[@as(usize, @intCast(-slot2))]);
            }
            if (pos == 0) break;
            q = q.dbl().dbl().dbl().dbl();
        }
        try q.rejectIdentity();
        return q;
    }

    /// Multiscalar multiplication *IN VARIABLE TIME* for public data
    /// Computes ps0*ss0 + ps1*ss1 + ps2*ss2... faster than doing many of these operations individually
    pub fn mulMulti(comptime count: usize, ps: [count]Edwards25519, ss: [count][32]u8) (IdentityElementError || WeakPublicKeyError)!Edwards25519 {
        var pcs: [count][9]Edwards25519 = undefined;

        var bpc: [9]Edwards25519 = undefined;
        @memcpy(&bpc, basePointPc[0..bpc.len]);

        for (ps, 0..) |p, i| {
            if (p.is_base) {
                pcs[i] = bpc;
            } else {
                pcs[i] = precompute(p, 8);
                pcs[i][4].rejectIdentity() catch return error.WeakPublicKey;
            }
        }
        var es: [count][2 * 32]i8 = undefined;
        for (ss, 0..) |s, i| {
            es[i] = slide(s);
        }
        var q = Edwards25519.identityElement;
        var pos: usize = 2 * 32 - 1;
        while (true) : (pos -= 1) {
            for (es, 0..) |e, i| {
                const slot = e[pos];
                if (slot > 0) {
                    q = q.add(pcs[i][@as(usize, @intCast(slot))]);
                } else if (slot < 0) {
                    q = q.sub(pcs[i][@as(usize, @intCast(-slot))]);
                }
            }
            if (pos == 0) break;
            q = q.dbl().dbl().dbl().dbl();
        }
        try q.rejectIdentity();
        return q;
    }

    /// Multiply an Edwards25519 point by a scalar after "clamping" it.
    /// Clamping forces the scalar to be a multiple of the cofactor in
    /// order to prevent small subgroups attacks.
    /// This is strongly recommended for DH operations.
    /// Return error.WeakPublicKey if the resulting point is
    /// the identity element.
    pub fn clampedMul(p: Edwards25519, s: [32]u8) (IdentityElementError || WeakPublicKeyError)!Edwards25519 {
        var t: [32]u8 = s;
        scalar.clamp(&t);
        return mul(p, t);
    }

    // montgomery -- recover y = sqrt(x^3 + A*x^2 + x)
    fn xmontToYmont(x: Fe) NotSquareError!Fe {
        var x2 = x.sq();
        const x3 = x.mul(x2);
        x2 = x2.mul32(Fe.edwards25519a_32);
        return x.add(x2).add(x3).sqrt();
    }

    // montgomery affine coordinates to edwards extended coordinates
    fn montToEd(x: Fe, y: Fe) Edwards25519 {
        const x_plus_one = x.add(Fe.one);
        const x_minus_one = x.sub(Fe.one);
        const x_plus_one_y_inv = x_plus_one.mul(y).invert(); // 1/((x+1)*y)

        // xed = sqrt(-A-2)*x/y
        const xed = x.mul(Fe.edwards25519sqrtam2).mul(x_plus_one_y_inv).mul(x_plus_one);

        // yed = (x-1)/(x+1) or 1 if the denominator is 0
        var yed = x_plus_one_y_inv.mul(y).mul(x_minus_one);
        yed.cMov(Fe.one, @intFromBool(x_plus_one_y_inv.isZero()));

        return Edwards25519{
            .x = xed,
            .y = yed,
            .z = Fe.one,
            .t = xed.mul(yed),
        };
    }

    /// Elligator2 map - Returns Montgomery affine coordinates
    pub fn elligator2(r: Fe) struct { x: Fe, y: Fe, not_square: bool } {
        const rr2 = r.sq2().add(Fe.one).invert();
        var x = rr2.mul32(Fe.edwards25519a_32).neg(); // x=x1
        var x2 = x.sq();
        const x3 = x2.mul(x);
        x2 = x2.mul32(Fe.edwards25519a_32); // x2 = A*x1^2
        const gx1 = x3.add(x).add(x2); // gx1 = x1^3 + A*x1^2 + x1
        const not_square = !gx1.isSquare();

        // gx1 not a square => x = -x1-A
        x.cMov(x.neg(), @intFromBool(not_square));
        x2 = Fe.zero;
        x2.cMov(Fe.edwards25519a, @intFromBool(not_square));
        x = x.sub(x2);

        // We have y = sqrt(gx1) or sqrt(gx2) with gx2 = gx1*(A+x1)/(-x1)
        // but it is about as fast to just recompute y from the curve equation.
        const y = xmontToYmont(x) catch unreachable;
        return .{ .x = x, .y = y, .not_square = not_square };
    }

    /// Map a 64-bit hash into an Edwards25519 point
    pub fn fromHash(h: [64]u8) Edwards25519 {
        const fe_f = Fe.fromBytes64(h);
        var elr = elligator2(fe_f);

        const y_sign = !elr.not_square;
        const y_neg = elr.y.neg();
        elr.y.cMov(y_neg, @intFromBool(elr.y.isNegative()) ^ @intFromBool(y_sign));
        return montToEd(elr.x, elr.y).clearCofactor();
    }

    fn stringToPoints(comptime n: usize, ctx: []const u8, s: []const u8) [n]Edwards25519 {
        debug.assert(n <= 2);
        const H = crypto.hash.sha2.Sha512;
        const h_l: usize = 48;
        var xctx = ctx;
        var hctx: [H.digest_length]u8 = undefined;
        if (ctx.len > 0xff) {
            var st = H.init(.{});
            st.update("H2C-OVERSIZE-DST-");
            st.update(ctx);
            st.final(&hctx);
            xctx = hctx[0..];
        }
        const empty_block = [_]u8{0} ** H.block_length;
        var t = [3]u8{ 0, n * h_l, 0 };
        var xctx_len_u8 = [1]u8{@as(u8, @intCast(xctx.len))};
        var st = H.init(.{});
        st.update(empty_block[0..]);
        st.update(s);
        st.update(t[0..]);
        st.update(xctx);
        st.update(xctx_len_u8[0..]);
        var u_0: [H.digest_length]u8 = undefined;
        st.final(&u_0);
        var u: [n * H.digest_length]u8 = undefined;
        var i: usize = 0;
        while (i < n * H.digest_length) : (i += H.digest_length) {
            u[i..][0..H.digest_length].* = u_0;
            var j: usize = 0;
            while (i > 0 and j < H.digest_length) : (j += 1) {
                u[i + j] ^= u[i + j - H.digest_length];
            }
            t[2] += 1;
            st = H.init(.{});
            st.update(u[i..][0..H.digest_length]);
            st.update(t[2..3]);
            st.update(xctx);
            st.update(xctx_len_u8[0..]);
            st.final(u[i..][0..H.digest_length]);
        }
        var px: [n]Edwards25519 = undefined;
        i = 0;
        while (i < n) : (i += 1) {
            @memset(u_0[0 .. H.digest_length - h_l], 0);
            u_0[H.digest_length - h_l ..][0..h_l].* = u[i * h_l ..][0..h_l].*;
            px[i] = fromHash(u_0);
        }
        return px;
    }

    /// Hash a context `ctx` and a string `s` into an Edwards25519 point
    ///
    /// This function implements the edwards25519_XMD:SHA-512_ELL2_RO_ and edwards25519_XMD:SHA-512_ELL2_NU_
    /// methods from the "Hashing to Elliptic Curves" standard document.
    ///
    /// Although not strictly required by the standard, it is recommended to avoid NUL characters in
    /// the context in order to be compatible with other implementations.
    pub fn fromString(comptime random_oracle: bool, ctx: []const u8, s: []const u8) Edwards25519 {
        if (random_oracle) {
            const px = stringToPoints(2, ctx, s);
            return px[0].add(px[1]);
        } else {
            return stringToPoints(1, ctx, s)[0];
        }
    }

    /// Map a 32 bit uniform bit string into an edwards25519 point
    pub fn fromUniform(r: [32]u8) Edwards25519 {
        var s = r;
        const x_sign = s[31] >> 7;
        s[31] &= 0x7f;
        const elr = elligator2(Fe.fromBytes(s));
        var p = montToEd(elr.x, elr.y);
        const p_neg = p.neg();
        p.cMov(p_neg, @intFromBool(p.x.isNegative()) ^ x_sign);
        return p.clearCofactor();
    }
}