A bit set with runtime-known size, backed by an allocated slice of usize. The allocator must be tracked externally by the user.
The integer type used to represent a mask in this bit set
pub const MaskInt = usizeThe integer type used to shift a mask in this bit set
options: IteratorOptionspub fn Iterator(comptime options: IteratorOptions) type {
return BitSetIterator(MaskInt, options);
}bit_length: usize = 0The number of valid items in this bit set
masks: [*]MaskInt = empty_masks_ptrThe bit masks, ordered with lower indices first. Padding bits at the end must be zeroed.
Creates a bit set with no elements present. If bit_length is not zero, deinit must eventually be called.
allocator: Allocatorbit_length: usizeCreates a bit set with all elements present. If bit_length is not zero, deinit must eventually be called.
allocator: Allocatorbit_length: usizepub fn resize(self: *@This(), allocator: Allocator, new_len: usize, fill: bool) !voidResizes to a new bit_length. If the new length is larger
than the old length, fills any added bits with fill.
If new_len is not zero, deinit must eventually be called.
pub fn resize(self: *@This(), allocator: Allocator, new_len: usize, fill: bool) !void {
const old_len = self.bit_length;
const old_masks = numMasks(old_len);
const new_masks = numMasks(new_len);
const old_allocation = (self.masks - 1)[0..(self.masks - 1)[0]];
if (new_masks == 0) {
assert(new_len == 0);
allocator.free(old_allocation);
self.masks = empty_masks_ptr;
self.bit_length = 0;
return;
}
if (old_allocation.len != new_masks + 1) realloc: {
// If realloc fails, it may mean one of two things.
// If we are growing, it means we are out of memory.
// If we are shrinking, it means the allocator doesn't
// want to move the allocation. This means we need to
// hold on to the extra 8 bytes required to be able to free
// this allocation properly.
const new_allocation = allocator.realloc(old_allocation, new_masks + 1) catch |err| {
if (new_masks + 1 > old_allocation.len) return err;
break :realloc;
};
new_allocation[0] = new_allocation.len;
self.masks = new_allocation.ptr + 1;
}
// If we increased in size, we need to set any new bits
// to the fill value.
if (new_len > old_len) {
// set the padding bits in the old last item to 1
if (fill and old_masks > 0) {
const old_padding_bits = old_masks * @bitSizeOf(MaskInt) - old_len;
const old_mask = (~@as(MaskInt, 0)) >> @as(ShiftInt, @intCast(old_padding_bits));
self.masks[old_masks - 1] |= ~old_mask;
}
// fill in any new masks
if (new_masks > old_masks) {
const fill_value = std.math.boolMask(MaskInt, fill);
@memset(self.masks[old_masks..new_masks], fill_value);
}
}
// Zero out the padding bits
if (new_len > 0) {
const padding_bits = new_masks * @bitSizeOf(MaskInt) - new_len;
const last_item_mask = (~@as(MaskInt, 0)) >> @as(ShiftInt, @intCast(padding_bits));
self.masks[new_masks - 1] &= last_item_mask;
}
// And finally, save the new length.
self.bit_length = new_len;
}Deinitializes the array and releases its memory. The passed allocator must be the same one used for init* or resize in the past.
Creates a duplicate of this bit set, using the new allocator.
pub inline fn capacity(self: Self) usizeReturns the number of bits in this bit set
self: Selfpub inline fn capacity(self: Self) usize {
return self.bit_length;
}pub fn isSet(self: Self, index: usize) boolReturns true if the bit at the specified index is present in the set, false otherwise.
self: Selfindex: usizepub fn count(self: Self) usizeReturns the total number of set bits in this bit set.
self: Selfpub fn setValue(self: *Self, index: usize, value: bool) voidChanges the value of the specified bit of the bit set to match the passed boolean.
pub fn set(self: *Self, index: usize) voidAdds a specific bit to the bit set
self: *Selfindex: usizeChanges the value of all bits in the specified range to match the passed boolean.
pub fn setRangeValue(self: *Self, range: Range, value: bool) void {
assert(range.end <= self.bit_length);
assert(range.start <= range.end);
if (range.start == range.end) return;
const start_mask_index = maskIndex(range.start);
const start_bit = @as(ShiftInt, @truncate(range.start));
const end_mask_index = maskIndex(range.end);
const end_bit = @as(ShiftInt, @truncate(range.end));
if (start_mask_index == end_mask_index) {
var mask1 = std.math.boolMask(MaskInt, true) << start_bit;
var mask2 = std.math.boolMask(MaskInt, true) >> (@bitSizeOf(MaskInt) - 1) - (end_bit - 1);
self.masks[start_mask_index] &= ~(mask1 & mask2);
mask1 = std.math.boolMask(MaskInt, value) << start_bit;
mask2 = std.math.boolMask(MaskInt, value) >> (@bitSizeOf(MaskInt) - 1) - (end_bit - 1);
self.masks[start_mask_index] |= mask1 & mask2;
} else {
var bulk_mask_index: usize = undefined;
if (start_bit > 0) {
self.masks[start_mask_index] =
(self.masks[start_mask_index] & ~(std.math.boolMask(MaskInt, true) << start_bit)) |
(std.math.boolMask(MaskInt, value) << start_bit);
bulk_mask_index = start_mask_index + 1;
} else {
bulk_mask_index = start_mask_index;
}
while (bulk_mask_index < end_mask_index) : (bulk_mask_index += 1) {
self.masks[bulk_mask_index] = std.math.boolMask(MaskInt, value);
}
if (end_bit > 0) {
self.masks[end_mask_index] =
(self.masks[end_mask_index] & (std.math.boolMask(MaskInt, true) << end_bit)) |
(std.math.boolMask(MaskInt, value) >> ((@bitSizeOf(MaskInt) - 1) - (end_bit - 1)));
}
}
}pub fn unset(self: *Self, index: usize) voidRemoves a specific bit from the bit set
self: *Selfindex: usizepub fn toggle(self: *Self, index: usize) voidFlips a specific bit in the bit set
self: *Selfindex: usizeFlips all bits in this bit set which are present in the toggles bit set. Both sets must have the same bit_length.
pub fn toggleAll(self: *Self) voidFlips every bit in the bit set.
self: *Selfpub fn toggleAll(self: *Self) void {
const bit_length = self.bit_length;
// avoid underflow if bit_length is zero
if (bit_length == 0) return;
const num_masks = numMasks(self.bit_length);
for (self.masks[0..num_masks]) |*mask| {
mask.* = ~mask.*;
}
const padding_bits = num_masks * @bitSizeOf(MaskInt) - bit_length;
const last_item_mask = (~@as(MaskInt, 0)) >> @as(ShiftInt, @intCast(padding_bits));
self.masks[num_masks - 1] &= last_item_mask;
}Performs a union of two bit sets, and stores the result in the first one. Bits in the result are set if the corresponding bits were set in either input. The two sets must both be the same bit_length.
Performs an intersection of two bit sets, and stores the result in the first one. Bits in the result are set if the corresponding bits were set in both inputs. The two sets must both be the same bit_length.
pub fn findFirstSet(self: Self) ?usizeFinds the index of the first set bit. If no bits are set, returns null.
self: Selfpub fn toggleFirstSet(self: *Self) ?usizeFinds the index of the first set bit, and unsets it. If no bits are set, returns null.
self: *Selfpub fn toggleFirstSet(self: *Self) ?usize {
var offset: usize = 0;
var mask = self.masks;
while (offset < self.bit_length) {
if (mask[0] != 0) break;
mask += 1;
offset += @bitSizeOf(MaskInt);
} else return null;
const index = @ctz(mask[0]);
mask[0] &= (mask[0] - 1);
return offset + index;
}Returns true iff every corresponding bit in both bit sets are the same.
Returns true iff the first bit set is the subset of the second one.
pub fn subsetOf(self: Self, other: Self) bool {
if (self.bit_length != other.bit_length) {
return false;
}
const num_masks = numMasks(self.bit_length);
var i: usize = 0;
return while (i < num_masks) : (i += 1) {
if (self.masks[i] & other.masks[i] != self.masks[i]) {
break false;
}
} else true;
}Returns true iff the first bit set is the superset of the second one.
pub fn supersetOf(self: Self, other: Self) bool {
if (self.bit_length != other.bit_length) {
return false;
}
const num_masks = numMasks(self.bit_length);
var i: usize = 0;
return while (i < num_masks) : (i += 1) {
if (self.masks[i] & other.masks[i] != other.masks[i]) {
break false;
}
} else true;
}pub fn iterator(self: *const Self, comptime options: IteratorOptions) Iterator(options)Iterates through the items in the set, according to the options. The default options (.{}) will iterate indices of set bits in ascending order. Modifications to the underlying bit set may or may not be observed by the iterator. Resizing the underlying bit set invalidates the iterator.
self: *const Selfoptions: IteratorOptionspub fn iterator(self: *const Self, comptime options: IteratorOptions) Iterator(options) {
const num_masks = numMasks(self.bit_length);
const padding_bits = num_masks * @bitSizeOf(MaskInt) - self.bit_length;
const last_item_mask = (~@as(MaskInt, 0)) >> @as(ShiftInt, @intCast(padding_bits));
return Iterator(options).init(self.masks[0..num_masks], last_item_mask);
}pub const DynamicBitSetUnmanaged = struct {
const Self = @This();
/// The integer type used to represent a mask in this bit set
pub const MaskInt = usize;
/// The integer type used to shift a mask in this bit set
pub const ShiftInt = std.math.Log2Int(MaskInt);
/// The number of valid items in this bit set
bit_length: usize = 0,
/// The bit masks, ordered with lower indices first.
/// Padding bits at the end must be zeroed.
masks: [*]MaskInt = empty_masks_ptr,
// This pointer is one usize after the actual allocation.
// That slot holds the size of the true allocation, which
// is needed by Zig's allocator interface in case a shrink
// fails.
// Don't modify this value. Ideally it would go in const data so
// modifications would cause a bus error, but the only way
// to discard a const qualifier is through intFromPtr, which
// cannot currently round trip at comptime.
var empty_masks_data = [_]MaskInt{ 0, undefined };
const empty_masks_ptr = empty_masks_data[1..2];
/// Creates a bit set with no elements present.
/// If bit_length is not zero, deinit must eventually be called.
pub fn initEmpty(allocator: Allocator, bit_length: usize) !Self {
var self = Self{};
try self.resize(allocator, bit_length, false);
return self;
}
/// Creates a bit set with all elements present.
/// If bit_length is not zero, deinit must eventually be called.
pub fn initFull(allocator: Allocator, bit_length: usize) !Self {
var self = Self{};
try self.resize(allocator, bit_length, true);
return self;
}
/// Resizes to a new bit_length. If the new length is larger
/// than the old length, fills any added bits with `fill`.
/// If new_len is not zero, deinit must eventually be called.
pub fn resize(self: *@This(), allocator: Allocator, new_len: usize, fill: bool) !void {
const old_len = self.bit_length;
const old_masks = numMasks(old_len);
const new_masks = numMasks(new_len);
const old_allocation = (self.masks - 1)[0..(self.masks - 1)[0]];
if (new_masks == 0) {
assert(new_len == 0);
allocator.free(old_allocation);
self.masks = empty_masks_ptr;
self.bit_length = 0;
return;
}
if (old_allocation.len != new_masks + 1) realloc: {
// If realloc fails, it may mean one of two things.
// If we are growing, it means we are out of memory.
// If we are shrinking, it means the allocator doesn't
// want to move the allocation. This means we need to
// hold on to the extra 8 bytes required to be able to free
// this allocation properly.
const new_allocation = allocator.realloc(old_allocation, new_masks + 1) catch |err| {
if (new_masks + 1 > old_allocation.len) return err;
break :realloc;
};
new_allocation[0] = new_allocation.len;
self.masks = new_allocation.ptr + 1;
}
// If we increased in size, we need to set any new bits
// to the fill value.
if (new_len > old_len) {
// set the padding bits in the old last item to 1
if (fill and old_masks > 0) {
const old_padding_bits = old_masks * @bitSizeOf(MaskInt) - old_len;
const old_mask = (~@as(MaskInt, 0)) >> @as(ShiftInt, @intCast(old_padding_bits));
self.masks[old_masks - 1] |= ~old_mask;
}
// fill in any new masks
if (new_masks > old_masks) {
const fill_value = std.math.boolMask(MaskInt, fill);
@memset(self.masks[old_masks..new_masks], fill_value);
}
}
// Zero out the padding bits
if (new_len > 0) {
const padding_bits = new_masks * @bitSizeOf(MaskInt) - new_len;
const last_item_mask = (~@as(MaskInt, 0)) >> @as(ShiftInt, @intCast(padding_bits));
self.masks[new_masks - 1] &= last_item_mask;
}
// And finally, save the new length.
self.bit_length = new_len;
}
/// Deinitializes the array and releases its memory.
/// The passed allocator must be the same one used for
/// init* or resize in the past.
pub fn deinit(self: *Self, allocator: Allocator) void {
self.resize(allocator, 0, false) catch unreachable;
}
/// Creates a duplicate of this bit set, using the new allocator.
pub fn clone(self: *const Self, new_allocator: Allocator) !Self {
const num_masks = numMasks(self.bit_length);
var copy = Self{};
try copy.resize(new_allocator, self.bit_length, false);
@memcpy(copy.masks[0..num_masks], self.masks[0..num_masks]);
return copy;
}
/// Returns the number of bits in this bit set
pub inline fn capacity(self: Self) usize {
return self.bit_length;
}
/// Returns true if the bit at the specified index
/// is present in the set, false otherwise.
pub fn isSet(self: Self, index: usize) bool {
assert(index < self.bit_length);
return (self.masks[maskIndex(index)] & maskBit(index)) != 0;
}
/// Returns the total number of set bits in this bit set.
pub fn count(self: Self) usize {
const num_masks = (self.bit_length + (@bitSizeOf(MaskInt) - 1)) / @bitSizeOf(MaskInt);
var total: usize = 0;
for (self.masks[0..num_masks]) |mask| {
// Note: This is where we depend on padding bits being zero
total += @popCount(mask);
}
return total;
}
/// Changes the value of the specified bit of the bit
/// set to match the passed boolean.
pub fn setValue(self: *Self, index: usize, value: bool) void {
assert(index < self.bit_length);
const bit = maskBit(index);
const mask_index = maskIndex(index);
const new_bit = bit & std.math.boolMask(MaskInt, value);
self.masks[mask_index] = (self.masks[mask_index] & ~bit) | new_bit;
}
/// Adds a specific bit to the bit set
pub fn set(self: *Self, index: usize) void {
assert(index < self.bit_length);
self.masks[maskIndex(index)] |= maskBit(index);
}
/// Changes the value of all bits in the specified range to
/// match the passed boolean.
pub fn setRangeValue(self: *Self, range: Range, value: bool) void {
assert(range.end <= self.bit_length);
assert(range.start <= range.end);
if (range.start == range.end) return;
const start_mask_index = maskIndex(range.start);
const start_bit = @as(ShiftInt, @truncate(range.start));
const end_mask_index = maskIndex(range.end);
const end_bit = @as(ShiftInt, @truncate(range.end));
if (start_mask_index == end_mask_index) {
var mask1 = std.math.boolMask(MaskInt, true) << start_bit;
var mask2 = std.math.boolMask(MaskInt, true) >> (@bitSizeOf(MaskInt) - 1) - (end_bit - 1);
self.masks[start_mask_index] &= ~(mask1 & mask2);
mask1 = std.math.boolMask(MaskInt, value) << start_bit;
mask2 = std.math.boolMask(MaskInt, value) >> (@bitSizeOf(MaskInt) - 1) - (end_bit - 1);
self.masks[start_mask_index] |= mask1 & mask2;
} else {
var bulk_mask_index: usize = undefined;
if (start_bit > 0) {
self.masks[start_mask_index] =
(self.masks[start_mask_index] & ~(std.math.boolMask(MaskInt, true) << start_bit)) |
(std.math.boolMask(MaskInt, value) << start_bit);
bulk_mask_index = start_mask_index + 1;
} else {
bulk_mask_index = start_mask_index;
}
while (bulk_mask_index < end_mask_index) : (bulk_mask_index += 1) {
self.masks[bulk_mask_index] = std.math.boolMask(MaskInt, value);
}
if (end_bit > 0) {
self.masks[end_mask_index] =
(self.masks[end_mask_index] & (std.math.boolMask(MaskInt, true) << end_bit)) |
(std.math.boolMask(MaskInt, value) >> ((@bitSizeOf(MaskInt) - 1) - (end_bit - 1)));
}
}
}
/// Removes a specific bit from the bit set
pub fn unset(self: *Self, index: usize) void {
assert(index < self.bit_length);
self.masks[maskIndex(index)] &= ~maskBit(index);
}
/// Set all bits to 0.
pub fn unsetAll(self: *Self) void {
const masks_len = numMasks(self.bit_length);
@memset(self.masks[0..masks_len], 0);
}
/// Set all bits to 1.
pub fn setAll(self: *Self) void {
const masks_len = numMasks(self.bit_length);
@memset(self.masks[0..masks_len], std.math.maxInt(MaskInt));
}
/// Flips a specific bit in the bit set
pub fn toggle(self: *Self, index: usize) void {
assert(index < self.bit_length);
self.masks[maskIndex(index)] ^= maskBit(index);
}
/// Flips all bits in this bit set which are present
/// in the toggles bit set. Both sets must have the
/// same bit_length.
pub fn toggleSet(self: *Self, toggles: Self) void {
assert(toggles.bit_length == self.bit_length);
const num_masks = numMasks(self.bit_length);
for (self.masks[0..num_masks], 0..) |*mask, i| {
mask.* ^= toggles.masks[i];
}
}
/// Flips every bit in the bit set.
pub fn toggleAll(self: *Self) void {
const bit_length = self.bit_length;
// avoid underflow if bit_length is zero
if (bit_length == 0) return;
const num_masks = numMasks(self.bit_length);
for (self.masks[0..num_masks]) |*mask| {
mask.* = ~mask.*;
}
const padding_bits = num_masks * @bitSizeOf(MaskInt) - bit_length;
const last_item_mask = (~@as(MaskInt, 0)) >> @as(ShiftInt, @intCast(padding_bits));
self.masks[num_masks - 1] &= last_item_mask;
}
/// Performs a union of two bit sets, and stores the
/// result in the first one. Bits in the result are
/// set if the corresponding bits were set in either input.
/// The two sets must both be the same bit_length.
pub fn setUnion(self: *Self, other: Self) void {
assert(other.bit_length == self.bit_length);
const num_masks = numMasks(self.bit_length);
for (self.masks[0..num_masks], 0..) |*mask, i| {
mask.* |= other.masks[i];
}
}
/// Performs an intersection of two bit sets, and stores
/// the result in the first one. Bits in the result are
/// set if the corresponding bits were set in both inputs.
/// The two sets must both be the same bit_length.
pub fn setIntersection(self: *Self, other: Self) void {
assert(other.bit_length == self.bit_length);
const num_masks = numMasks(self.bit_length);
for (self.masks[0..num_masks], 0..) |*mask, i| {
mask.* &= other.masks[i];
}
}
/// Finds the index of the first set bit.
/// If no bits are set, returns null.
pub fn findFirstSet(self: Self) ?usize {
var offset: usize = 0;
var mask = self.masks;
while (offset < self.bit_length) {
if (mask[0] != 0) break;
mask += 1;
offset += @bitSizeOf(MaskInt);
} else return null;
return offset + @ctz(mask[0]);
}
/// Finds the index of the first set bit, and unsets it.
/// If no bits are set, returns null.
pub fn toggleFirstSet(self: *Self) ?usize {
var offset: usize = 0;
var mask = self.masks;
while (offset < self.bit_length) {
if (mask[0] != 0) break;
mask += 1;
offset += @bitSizeOf(MaskInt);
} else return null;
const index = @ctz(mask[0]);
mask[0] &= (mask[0] - 1);
return offset + index;
}
/// Returns true iff every corresponding bit in both
/// bit sets are the same.
pub fn eql(self: Self, other: Self) bool {
if (self.bit_length != other.bit_length) {
return false;
}
const num_masks = numMasks(self.bit_length);
var i: usize = 0;
return while (i < num_masks) : (i += 1) {
if (self.masks[i] != other.masks[i]) {
break false;
}
} else true;
}
/// Returns true iff the first bit set is the subset
/// of the second one.
pub fn subsetOf(self: Self, other: Self) bool {
if (self.bit_length != other.bit_length) {
return false;
}
const num_masks = numMasks(self.bit_length);
var i: usize = 0;
return while (i < num_masks) : (i += 1) {
if (self.masks[i] & other.masks[i] != self.masks[i]) {
break false;
}
} else true;
}
/// Returns true iff the first bit set is the superset
/// of the second one.
pub fn supersetOf(self: Self, other: Self) bool {
if (self.bit_length != other.bit_length) {
return false;
}
const num_masks = numMasks(self.bit_length);
var i: usize = 0;
return while (i < num_masks) : (i += 1) {
if (self.masks[i] & other.masks[i] != other.masks[i]) {
break false;
}
} else true;
}
/// Iterates through the items in the set, according to the options.
/// The default options (.{}) will iterate indices of set bits in
/// ascending order. Modifications to the underlying bit set may
/// or may not be observed by the iterator. Resizing the underlying
/// bit set invalidates the iterator.
pub fn iterator(self: *const Self, comptime options: IteratorOptions) Iterator(options) {
const num_masks = numMasks(self.bit_length);
const padding_bits = num_masks * @bitSizeOf(MaskInt) - self.bit_length;
const last_item_mask = (~@as(MaskInt, 0)) >> @as(ShiftInt, @intCast(padding_bits));
return Iterator(options).init(self.masks[0..num_masks], last_item_mask);
}
pub fn Iterator(comptime options: IteratorOptions) type {
return BitSetIterator(MaskInt, options);
}
fn maskBit(index: usize) MaskInt {
return @as(MaskInt, 1) << @as(ShiftInt, @truncate(index));
}
fn maskIndex(index: usize) usize {
return index >> @bitSizeOf(ShiftInt);
}
fn boolMaskBit(index: usize, value: bool) MaskInt {
return @as(MaskInt, @intFromBool(value)) << @as(ShiftInt, @intCast(index));
}
fn numMasks(bit_length: usize) usize {
return (bit_length + (@bitSizeOf(MaskInt) - 1)) / @bitSizeOf(MaskInt);
}
}