structstd.Random[src]

The engines provided here should be initialized from an external source. For a thread-local cryptographically secure pseudo random number generator, use std.crypto.random. Be sure to use a CSPRNG when required, otherwise using a normal PRNG will be faster and use substantially less stack space.

Fields

ptr: *anyopaque

Any comparison of this field may result in illegal behavior, since it may be set to undefined in cases where the random implementation does not have any associated state.

fillFn: *const fn (ptr: *anyopaque, buf: []u8) void

Functions

Functioninit[src]

pub fn init(pointer: anytype, comptime fillFn: fn (ptr: @TypeOf(pointer), buf: []u8) void) Random

Parameters

fillFn: fn (ptr: @TypeOf(pointer), buf: []u8) void

Source Code

Source code
pub fn init(pointer: anytype, comptime fillFn: fn (ptr: @TypeOf(pointer), buf: []u8) void) Random {
    const Ptr = @TypeOf(pointer);
    assert(@typeInfo(Ptr) == .pointer); // Must be a pointer
    assert(@typeInfo(Ptr).pointer.size == .one); // Must be a single-item pointer
    assert(@typeInfo(@typeInfo(Ptr).pointer.child) == .@"struct"); // Must point to a struct
    const gen = struct {
        fn fill(ptr: *anyopaque, buf: []u8) void {
            const self: Ptr = @ptrCast(@alignCast(ptr));
            fillFn(self, buf);
        }
    };

    return .{
        .ptr = pointer,
        .fillFn = gen.fill,
    };
}

Functionbytes[src]

pub fn bytes(r: Random, buf: []u8) void

Read random bytes into the specified buffer until full.

Parameters

buf: []u8

Source Code

Source code
pub fn bytes(r: Random, buf: []u8) void {
    r.fillFn(r.ptr, buf);
}

Functionboolean[src]

pub fn boolean(r: Random) bool

Parameters

Source Code

Source code
pub fn boolean(r: Random) bool {
    return r.int(u1) != 0;
}

FunctionenumValue[src]

pub inline fn enumValue(r: Random, comptime EnumType: type) EnumType

Returns a random value from an enum, evenly distributed.

Note that this will not yield consistent results across all targets due to dependence on the representation of usize as an index. See enumValueWithIndex for further commentary.

Parameters

EnumType: type

Source Code

Source code
pub inline fn enumValue(r: Random, comptime EnumType: type) EnumType {
    return r.enumValueWithIndex(EnumType, usize);
}

FunctionenumValueWithIndex[src]

pub fn enumValueWithIndex(r: Random, comptime EnumType: type, comptime Index: type) EnumType

Returns a random value from an enum, evenly distributed.

An index into an array of all named values is generated using the specified Index type to determine the return value. This allows for results to be independent of usize representation.

Prefer enumValue if this isn't important.

See uintLessThan, which this function uses in most cases, for commentary on the runtime of this function.

Parameters

EnumType: type
Index: type

Source Code

Source code
pub fn enumValueWithIndex(r: Random, comptime EnumType: type, comptime Index: type) EnumType {
    comptime assert(@typeInfo(EnumType) == .@"enum");

    // We won't use int -> enum casting because enum elements can have
    //  arbitrary values.  Instead we'll randomly pick one of the type's values.
    const values = comptime std.enums.values(EnumType);
    comptime assert(values.len > 0); // can't return anything
    comptime assert(maxInt(Index) >= values.len - 1); // can't access all values
    if (values.len == 1) return values[0];

    const index = if (comptime values.len - 1 == maxInt(Index))
        r.int(Index)
    else
        r.uintLessThan(Index, values.len);

    const MinInt = MinArrayIndex(Index);
    return values[@as(MinInt, @intCast(index))];
}

Functionint[src]

pub fn int(r: Random, comptime T: type) T

Returns a random int i such that minInt(T) <= i <= maxInt(T). i is evenly distributed.

Parameters

T: type

Source Code

Source code
pub fn int(r: Random, comptime T: type) T {
    const bits = @typeInfo(T).int.bits;
    const UnsignedT = std.meta.Int(.unsigned, bits);
    const ceil_bytes = comptime std.math.divCeil(u16, bits, 8) catch unreachable;
    const ByteAlignedT = std.meta.Int(.unsigned, ceil_bytes * 8);

    var rand_bytes: [ceil_bytes]u8 = undefined;
    r.bytes(&rand_bytes);

    // use LE instead of native endian for better portability maybe?
    // TODO: endian portability is pointless if the underlying prng isn't endian portable.
    // TODO: document the endian portability of this library.
    const byte_aligned_result = mem.readInt(ByteAlignedT, &rand_bytes, .little);
    const unsigned_result: UnsignedT = @truncate(byte_aligned_result);
    return @bitCast(unsigned_result);
}

FunctionuintLessThanBiased[src]

pub fn uintLessThanBiased(r: Random, comptime T: type, less_than: T) T

Constant-time implementation off uintLessThan. The results of this function may be biased.

Parameters

T: type
less_than: T

Source Code

Source code
pub fn uintLessThanBiased(r: Random, comptime T: type, less_than: T) T {
    comptime assert(@typeInfo(T).int.signedness == .unsigned);
    assert(0 < less_than);
    return limitRangeBiased(T, r.int(T), less_than);
}

FunctionuintLessThan[src]

pub fn uintLessThan(r: Random, comptime T: type, less_than: T) T

Returns an evenly distributed random unsigned integer 0 <= i < less_than. This function assumes that the underlying fillFn produces evenly distributed values. Within this assumption, the runtime of this function is exponentially distributed. If fillFn were backed by a true random generator, the runtime of this function would technically be unbounded. However, if fillFn is backed by any evenly distributed pseudo random number generator, this function is guaranteed to return. If you need deterministic runtime bounds, use uintLessThanBiased.

Parameters

T: type
less_than: T

Source Code

Source code
pub fn uintLessThan(r: Random, comptime T: type, less_than: T) T {
    comptime assert(@typeInfo(T).int.signedness == .unsigned);
    const bits = @typeInfo(T).int.bits;
    assert(0 < less_than);

    // adapted from:
    //   http://www.pcg-random.org/posts/bounded-rands.html
    //   "Lemire's (with an extra tweak from me)"
    var x = r.int(T);
    var m = math.mulWide(T, x, less_than);
    var l: T = @truncate(m);
    if (l < less_than) {
        var t = -%less_than;

        if (t >= less_than) {
            t -= less_than;
            if (t >= less_than) {
                t %= less_than;
            }
        }
        while (l < t) {
            x = r.int(T);
            m = math.mulWide(T, x, less_than);
            l = @truncate(m);
        }
    }
    return @intCast(m >> bits);
}

FunctionuintAtMostBiased[src]

pub fn uintAtMostBiased(r: Random, comptime T: type, at_most: T) T

Constant-time implementation off uintAtMost. The results of this function may be biased.

Parameters

T: type
at_most: T

Source Code

Source code
pub fn uintAtMostBiased(r: Random, comptime T: type, at_most: T) T {
    assert(@typeInfo(T).int.signedness == .unsigned);
    if (at_most == maxInt(T)) {
        // have the full range
        return r.int(T);
    }
    return r.uintLessThanBiased(T, at_most + 1);
}

FunctionuintAtMost[src]

pub fn uintAtMost(r: Random, comptime T: type, at_most: T) T

Returns an evenly distributed random unsigned integer 0 <= i <= at_most. See uintLessThan, which this function uses in most cases, for commentary on the runtime of this function.

Parameters

T: type
at_most: T

Source Code

Source code
pub fn uintAtMost(r: Random, comptime T: type, at_most: T) T {
    assert(@typeInfo(T).int.signedness == .unsigned);
    if (at_most == maxInt(T)) {
        // have the full range
        return r.int(T);
    }
    return r.uintLessThan(T, at_most + 1);
}

FunctionintRangeLessThanBiased[src]

pub fn intRangeLessThanBiased(r: Random, comptime T: type, at_least: T, less_than: T) T

Constant-time implementation off intRangeLessThan. The results of this function may be biased.

Parameters

T: type
at_least: T
less_than: T

Source Code

Source code
pub fn intRangeLessThanBiased(r: Random, comptime T: type, at_least: T, less_than: T) T {
    assert(at_least < less_than);
    const info = @typeInfo(T).int;
    if (info.signedness == .signed) {
        // Two's complement makes this math pretty easy.
        const UnsignedT = std.meta.Int(.unsigned, info.bits);
        const lo: UnsignedT = @bitCast(at_least);
        const hi: UnsignedT = @bitCast(less_than);
        const result = lo +% r.uintLessThanBiased(UnsignedT, hi -% lo);
        return @bitCast(result);
    } else {
        // The signed implementation would work fine, but we can use stricter arithmetic operators here.
        return at_least + r.uintLessThanBiased(T, less_than - at_least);
    }
}

FunctionintRangeLessThan[src]

pub fn intRangeLessThan(r: Random, comptime T: type, at_least: T, less_than: T) T

Returns an evenly distributed random integer at_least <= i < less_than. See uintLessThan, which this function uses in most cases, for commentary on the runtime of this function.

Parameters

T: type
at_least: T
less_than: T

Source Code

Source code
pub fn intRangeLessThan(r: Random, comptime T: type, at_least: T, less_than: T) T {
    assert(at_least < less_than);
    const info = @typeInfo(T).int;
    if (info.signedness == .signed) {
        // Two's complement makes this math pretty easy.
        const UnsignedT = std.meta.Int(.unsigned, info.bits);
        const lo: UnsignedT = @bitCast(at_least);
        const hi: UnsignedT = @bitCast(less_than);
        const result = lo +% r.uintLessThan(UnsignedT, hi -% lo);
        return @bitCast(result);
    } else {
        // The signed implementation would work fine, but we can use stricter arithmetic operators here.
        return at_least + r.uintLessThan(T, less_than - at_least);
    }
}

FunctionintRangeAtMostBiased[src]

pub fn intRangeAtMostBiased(r: Random, comptime T: type, at_least: T, at_most: T) T

Constant-time implementation off intRangeAtMostBiased. The results of this function may be biased.

Parameters

T: type
at_least: T
at_most: T

Source Code

Source code
pub fn intRangeAtMostBiased(r: Random, comptime T: type, at_least: T, at_most: T) T {
    assert(at_least <= at_most);
    const info = @typeInfo(T).int;
    if (info.signedness == .signed) {
        // Two's complement makes this math pretty easy.
        const UnsignedT = std.meta.Int(.unsigned, info.bits);
        const lo: UnsignedT = @bitCast(at_least);
        const hi: UnsignedT = @bitCast(at_most);
        const result = lo +% r.uintAtMostBiased(UnsignedT, hi -% lo);
        return @bitCast(result);
    } else {
        // The signed implementation would work fine, but we can use stricter arithmetic operators here.
        return at_least + r.uintAtMostBiased(T, at_most - at_least);
    }
}

FunctionintRangeAtMost[src]

pub fn intRangeAtMost(r: Random, comptime T: type, at_least: T, at_most: T) T

Returns an evenly distributed random integer at_least <= i <= at_most. See uintLessThan, which this function uses in most cases, for commentary on the runtime of this function.

Parameters

T: type
at_least: T
at_most: T

Source Code

Source code
pub fn intRangeAtMost(r: Random, comptime T: type, at_least: T, at_most: T) T {
    assert(at_least <= at_most);
    const info = @typeInfo(T).int;
    if (info.signedness == .signed) {
        // Two's complement makes this math pretty easy.
        const UnsignedT = std.meta.Int(.unsigned, info.bits);
        const lo: UnsignedT = @bitCast(at_least);
        const hi: UnsignedT = @bitCast(at_most);
        const result = lo +% r.uintAtMost(UnsignedT, hi -% lo);
        return @bitCast(result);
    } else {
        // The signed implementation would work fine, but we can use stricter arithmetic operators here.
        return at_least + r.uintAtMost(T, at_most - at_least);
    }
}

Functionfloat[src]

pub fn float(r: Random, comptime T: type) T

Return a floating point value evenly distributed in the range [0, 1).

Parameters

T: type

Source Code

Source code
pub fn float(r: Random, comptime T: type) T {
    // Generate a uniformly random value for the mantissa.
    // Then generate an exponentially biased random value for the exponent.
    // This covers every possible value in the range.
    switch (T) {
        f32 => {
            // Use 23 random bits for the mantissa, and the rest for the exponent.
            // If all 41 bits are zero, generate additional random bits, until a
            // set bit is found, or 126 bits have been generated.
            const rand = r.int(u64);
            var rand_lz = @clz(rand);
            if (rand_lz >= 41) {
                @branchHint(.unlikely);
                rand_lz = 41 + @clz(r.int(u64));
                if (rand_lz == 41 + 64) {
                    @branchHint(.unlikely);
                    // It is astronomically unlikely to reach this point.
                    rand_lz += @clz(r.int(u32) | 0x7FF);
                }
            }
            const mantissa: u23 = @truncate(rand);
            const exponent = @as(u32, 126 - rand_lz) << 23;
            return @bitCast(exponent | mantissa);
        },
        f64 => {
            // Use 52 random bits for the mantissa, and the rest for the exponent.
            // If all 12 bits are zero, generate additional random bits, until a
            // set bit is found, or 1022 bits have been generated.
            const rand = r.int(u64);
            var rand_lz: u64 = @clz(rand);
            if (rand_lz >= 12) {
                rand_lz = 12;
                while (true) {
                    // It is astronomically unlikely for this loop to execute more than once.
                    const addl_rand_lz = @clz(r.int(u64));
                    rand_lz += addl_rand_lz;
                    if (addl_rand_lz != 64) {
                        @branchHint(.likely);
                        break;
                    }
                    if (rand_lz >= 1022) {
                        rand_lz = 1022;
                        break;
                    }
                }
            }
            const mantissa = rand & 0xFFFFFFFFFFFFF;
            const exponent = (1022 - rand_lz) << 52;
            return @bitCast(exponent | mantissa);
        },
        else => @compileError("unknown floating point type"),
    }
}

FunctionfloatNorm[src]

pub fn floatNorm(r: Random, comptime T: type) T

Return a floating point value normally distributed with mean = 0, stddev = 1.

To use different parameters, use: floatNorm(...) * desiredStddev + desiredMean.

Parameters

T: type

Source Code

Source code
pub fn floatNorm(r: Random, comptime T: type) T {
    const value = ziggurat.next_f64(r, ziggurat.NormDist);
    switch (T) {
        f32 => return @floatCast(value),
        f64 => return value,
        else => @compileError("unknown floating point type"),
    }
}

FunctionfloatExp[src]

pub fn floatExp(r: Random, comptime T: type) T

Return an exponentially distributed float with a rate parameter of 1.

To use a different rate parameter, use: floatExp(...) / desiredRate.

Parameters

T: type

Source Code

Source code
pub fn floatExp(r: Random, comptime T: type) T {
    const value = ziggurat.next_f64(r, ziggurat.ExpDist);
    switch (T) {
        f32 => return @floatCast(value),
        f64 => return value,
        else => @compileError("unknown floating point type"),
    }
}

Functionshuffle[src]

pub inline fn shuffle(r: Random, comptime T: type, buf: []T) void

Shuffle a slice into a random order.

Note that this will not yield consistent results across all targets due to dependence on the representation of usize as an index. See shuffleWithIndex for further commentary.

Parameters

T: type
buf: []T

Source Code

Source code
pub inline fn shuffle(r: Random, comptime T: type, buf: []T) void {
    r.shuffleWithIndex(T, buf, usize);
}

FunctionshuffleWithIndex[src]

pub fn shuffleWithIndex(r: Random, comptime T: type, buf: []T, comptime Index: type) void

Shuffle a slice into a random order, using an index of a specified type to maintain distribution across targets. Asserts the index type can represent buf.len.

Indexes into the slice are generated using the specified Index type, which determines distribution properties. This allows for results to be independent of usize representation.

Prefer shuffle if this isn't important.

See intRangeLessThan, which this function uses, for commentary on the runtime of this function.

Parameters

T: type
buf: []T
Index: type

Source Code

Source code
pub fn shuffleWithIndex(r: Random, comptime T: type, buf: []T, comptime Index: type) void {
    const MinInt = MinArrayIndex(Index);
    if (buf.len < 2) {
        return;
    }

    // `i <= j < max <= maxInt(MinInt)`
    const max: MinInt = @intCast(buf.len);
    var i: MinInt = 0;
    while (i < max - 1) : (i += 1) {
        const j: MinInt = @intCast(r.intRangeLessThan(Index, i, max));
        mem.swap(T, &buf[i], &buf[j]);
    }
}

FunctionweightedIndex[src]

pub fn weightedIndex(r: Random, comptime T: type, proportions: []const T) usize

Randomly selects an index into proportions, where the likelihood of each index is weighted by that proportion. It is more likely for the index of the last proportion to be returned than the index of the first proportion in the slice, and vice versa.

This is useful for selecting an item from a slice where weights are not equal. T must be a numeric type capable of holding the sum of proportions.

Parameters

T: type
proportions: []const T

Source Code

Source code
pub fn weightedIndex(r: Random, comptime T: type, proportions: []const T) usize {
    // This implementation works by summing the proportions and picking a
    // random point in [0, sum).  We then loop over the proportions,
    // accumulating until our accumulator is greater than the random point.

    const sum = s: {
        var sum: T = 0;
        for (proportions) |v| sum += v;
        break :s sum;
    };

    const point = switch (@typeInfo(T)) {
        .int => |int_info| switch (int_info.signedness) {
            .signed => r.intRangeLessThan(T, 0, sum),
            .unsigned => r.uintLessThan(T, sum),
        },
        // take care that imprecision doesn't lead to a value slightly greater than sum
        .float => @min(r.float(T) * sum, sum - std.math.floatEps(T)),
        else => @compileError("weightedIndex does not support proportions of type " ++
            @typeName(T)),
    };

    assert(point < sum);

    var accumulator: T = 0;
    for (proportions, 0..) |p, index| {
        accumulator += p;
        if (point < accumulator) return index;
    } else unreachable;
}

FunctionlimitRangeBiased[src]

pub fn limitRangeBiased(comptime T: type, random_int: T, less_than: T) T

Convert a random integer 0 <= random_int <= maxValue(T), into an integer 0 <= result < less_than. This function introduces a minor bias.

Parameters

T: type
random_int: T
less_than: T

Source Code

Source code
pub fn limitRangeBiased(comptime T: type, random_int: T, less_than: T) T {
    comptime assert(@typeInfo(T).int.signedness == .unsigned);
    const bits = @typeInfo(T).int.bits;

    // adapted from:
    //   http://www.pcg-random.org/posts/bounded-rands.html
    //   "Integer Multiplication (Biased)"
    const m = math.mulWide(T, random_int, less_than);
    return @intCast(m >> bits);
}

Source Code

Source code
//! The engines provided here should be initialized from an external source.
//! For a thread-local cryptographically secure pseudo random number generator,
//! use `std.crypto.random`.
//! Be sure to use a CSPRNG when required, otherwise using a normal PRNG will
//! be faster and use substantially less stack space.

const std = @import("std.zig");
const math = std.math;
const mem = std.mem;
const assert = std.debug.assert;
const maxInt = std.math.maxInt;
const Random = @This();

/// Fast unbiased random numbers.
pub const DefaultPrng = Xoshiro256;

/// Cryptographically secure random numbers.
pub const DefaultCsprng = ChaCha;

pub const Ascon = @import("Random/Ascon.zig");
pub const ChaCha = @import("Random/ChaCha.zig");

pub const Isaac64 = @import("Random/Isaac64.zig");
pub const Pcg = @import("Random/Pcg.zig");
pub const Xoroshiro128 = @import("Random/Xoroshiro128.zig");
pub const Xoshiro256 = @import("Random/Xoshiro256.zig");
pub const Sfc64 = @import("Random/Sfc64.zig");
pub const RomuTrio = @import("Random/RomuTrio.zig");
pub const SplitMix64 = @import("Random/SplitMix64.zig");
pub const ziggurat = @import("Random/ziggurat.zig");

/// Any comparison of this field may result in illegal behavior, since it may be set to
/// `undefined` in cases where the random implementation does not have any associated
/// state.
ptr: *anyopaque,
fillFn: *const fn (ptr: *anyopaque, buf: []u8) void,

pub fn init(pointer: anytype, comptime fillFn: fn (ptr: @TypeOf(pointer), buf: []u8) void) Random {
    const Ptr = @TypeOf(pointer);
    assert(@typeInfo(Ptr) == .pointer); // Must be a pointer
    assert(@typeInfo(Ptr).pointer.size == .one); // Must be a single-item pointer
    assert(@typeInfo(@typeInfo(Ptr).pointer.child) == .@"struct"); // Must point to a struct
    const gen = struct {
        fn fill(ptr: *anyopaque, buf: []u8) void {
            const self: Ptr = @ptrCast(@alignCast(ptr));
            fillFn(self, buf);
        }
    };

    return .{
        .ptr = pointer,
        .fillFn = gen.fill,
    };
}

/// Read random bytes into the specified buffer until full.
pub fn bytes(r: Random, buf: []u8) void {
    r.fillFn(r.ptr, buf);
}

pub fn boolean(r: Random) bool {
    return r.int(u1) != 0;
}

/// Returns a random value from an enum, evenly distributed.
///
/// Note that this will not yield consistent results across all targets
/// due to dependence on the representation of `usize` as an index.
/// See `enumValueWithIndex` for further commentary.
pub inline fn enumValue(r: Random, comptime EnumType: type) EnumType {
    return r.enumValueWithIndex(EnumType, usize);
}

/// Returns a random value from an enum, evenly distributed.
///
/// An index into an array of all named values is generated using the
/// specified `Index` type to determine the return value.
/// This allows for results to be independent of `usize` representation.
///
/// Prefer `enumValue` if this isn't important.
///
/// See `uintLessThan`, which this function uses in most cases,
/// for commentary on the runtime of this function.
pub fn enumValueWithIndex(r: Random, comptime EnumType: type, comptime Index: type) EnumType {
    comptime assert(@typeInfo(EnumType) == .@"enum");

    // We won't use int -> enum casting because enum elements can have
    //  arbitrary values.  Instead we'll randomly pick one of the type's values.
    const values = comptime std.enums.values(EnumType);
    comptime assert(values.len > 0); // can't return anything
    comptime assert(maxInt(Index) >= values.len - 1); // can't access all values
    if (values.len == 1) return values[0];

    const index = if (comptime values.len - 1 == maxInt(Index))
        r.int(Index)
    else
        r.uintLessThan(Index, values.len);

    const MinInt = MinArrayIndex(Index);
    return values[@as(MinInt, @intCast(index))];
}

/// Returns a random int `i` such that `minInt(T) <= i <= maxInt(T)`.
/// `i` is evenly distributed.
pub fn int(r: Random, comptime T: type) T {
    const bits = @typeInfo(T).int.bits;
    const UnsignedT = std.meta.Int(.unsigned, bits);
    const ceil_bytes = comptime std.math.divCeil(u16, bits, 8) catch unreachable;
    const ByteAlignedT = std.meta.Int(.unsigned, ceil_bytes * 8);

    var rand_bytes: [ceil_bytes]u8 = undefined;
    r.bytes(&rand_bytes);

    // use LE instead of native endian for better portability maybe?
    // TODO: endian portability is pointless if the underlying prng isn't endian portable.
    // TODO: document the endian portability of this library.
    const byte_aligned_result = mem.readInt(ByteAlignedT, &rand_bytes, .little);
    const unsigned_result: UnsignedT = @truncate(byte_aligned_result);
    return @bitCast(unsigned_result);
}

/// Constant-time implementation off `uintLessThan`.
/// The results of this function may be biased.
pub fn uintLessThanBiased(r: Random, comptime T: type, less_than: T) T {
    comptime assert(@typeInfo(T).int.signedness == .unsigned);
    assert(0 < less_than);
    return limitRangeBiased(T, r.int(T), less_than);
}

/// Returns an evenly distributed random unsigned integer `0 <= i < less_than`.
/// This function assumes that the underlying `fillFn` produces evenly distributed values.
/// Within this assumption, the runtime of this function is exponentially distributed.
/// If `fillFn` were backed by a true random generator,
/// the runtime of this function would technically be unbounded.
/// However, if `fillFn` is backed by any evenly distributed pseudo random number generator,
/// this function is guaranteed to return.
/// If you need deterministic runtime bounds, use `uintLessThanBiased`.
pub fn uintLessThan(r: Random, comptime T: type, less_than: T) T {
    comptime assert(@typeInfo(T).int.signedness == .unsigned);
    const bits = @typeInfo(T).int.bits;
    assert(0 < less_than);

    // adapted from:
    //   http://www.pcg-random.org/posts/bounded-rands.html
    //   "Lemire's (with an extra tweak from me)"
    var x = r.int(T);
    var m = math.mulWide(T, x, less_than);
    var l: T = @truncate(m);
    if (l < less_than) {
        var t = -%less_than;

        if (t >= less_than) {
            t -= less_than;
            if (t >= less_than) {
                t %= less_than;
            }
        }
        while (l < t) {
            x = r.int(T);
            m = math.mulWide(T, x, less_than);
            l = @truncate(m);
        }
    }
    return @intCast(m >> bits);
}

/// Constant-time implementation off `uintAtMost`.
/// The results of this function may be biased.
pub fn uintAtMostBiased(r: Random, comptime T: type, at_most: T) T {
    assert(@typeInfo(T).int.signedness == .unsigned);
    if (at_most == maxInt(T)) {
        // have the full range
        return r.int(T);
    }
    return r.uintLessThanBiased(T, at_most + 1);
}

/// Returns an evenly distributed random unsigned integer `0 <= i <= at_most`.
/// See `uintLessThan`, which this function uses in most cases,
/// for commentary on the runtime of this function.
pub fn uintAtMost(r: Random, comptime T: type, at_most: T) T {
    assert(@typeInfo(T).int.signedness == .unsigned);
    if (at_most == maxInt(T)) {
        // have the full range
        return r.int(T);
    }
    return r.uintLessThan(T, at_most + 1);
}

/// Constant-time implementation off `intRangeLessThan`.
/// The results of this function may be biased.
pub fn intRangeLessThanBiased(r: Random, comptime T: type, at_least: T, less_than: T) T {
    assert(at_least < less_than);
    const info = @typeInfo(T).int;
    if (info.signedness == .signed) {
        // Two's complement makes this math pretty easy.
        const UnsignedT = std.meta.Int(.unsigned, info.bits);
        const lo: UnsignedT = @bitCast(at_least);
        const hi: UnsignedT = @bitCast(less_than);
        const result = lo +% r.uintLessThanBiased(UnsignedT, hi -% lo);
        return @bitCast(result);
    } else {
        // The signed implementation would work fine, but we can use stricter arithmetic operators here.
        return at_least + r.uintLessThanBiased(T, less_than - at_least);
    }
}

/// Returns an evenly distributed random integer `at_least <= i < less_than`.
/// See `uintLessThan`, which this function uses in most cases,
/// for commentary on the runtime of this function.
pub fn intRangeLessThan(r: Random, comptime T: type, at_least: T, less_than: T) T {
    assert(at_least < less_than);
    const info = @typeInfo(T).int;
    if (info.signedness == .signed) {
        // Two's complement makes this math pretty easy.
        const UnsignedT = std.meta.Int(.unsigned, info.bits);
        const lo: UnsignedT = @bitCast(at_least);
        const hi: UnsignedT = @bitCast(less_than);
        const result = lo +% r.uintLessThan(UnsignedT, hi -% lo);
        return @bitCast(result);
    } else {
        // The signed implementation would work fine, but we can use stricter arithmetic operators here.
        return at_least + r.uintLessThan(T, less_than - at_least);
    }
}

/// Constant-time implementation off `intRangeAtMostBiased`.
/// The results of this function may be biased.
pub fn intRangeAtMostBiased(r: Random, comptime T: type, at_least: T, at_most: T) T {
    assert(at_least <= at_most);
    const info = @typeInfo(T).int;
    if (info.signedness == .signed) {
        // Two's complement makes this math pretty easy.
        const UnsignedT = std.meta.Int(.unsigned, info.bits);
        const lo: UnsignedT = @bitCast(at_least);
        const hi: UnsignedT = @bitCast(at_most);
        const result = lo +% r.uintAtMostBiased(UnsignedT, hi -% lo);
        return @bitCast(result);
    } else {
        // The signed implementation would work fine, but we can use stricter arithmetic operators here.
        return at_least + r.uintAtMostBiased(T, at_most - at_least);
    }
}

/// Returns an evenly distributed random integer `at_least <= i <= at_most`.
/// See `uintLessThan`, which this function uses in most cases,
/// for commentary on the runtime of this function.
pub fn intRangeAtMost(r: Random, comptime T: type, at_least: T, at_most: T) T {
    assert(at_least <= at_most);
    const info = @typeInfo(T).int;
    if (info.signedness == .signed) {
        // Two's complement makes this math pretty easy.
        const UnsignedT = std.meta.Int(.unsigned, info.bits);
        const lo: UnsignedT = @bitCast(at_least);
        const hi: UnsignedT = @bitCast(at_most);
        const result = lo +% r.uintAtMost(UnsignedT, hi -% lo);
        return @bitCast(result);
    } else {
        // The signed implementation would work fine, but we can use stricter arithmetic operators here.
        return at_least + r.uintAtMost(T, at_most - at_least);
    }
}

/// Return a floating point value evenly distributed in the range [0, 1).
pub fn float(r: Random, comptime T: type) T {
    // Generate a uniformly random value for the mantissa.
    // Then generate an exponentially biased random value for the exponent.
    // This covers every possible value in the range.
    switch (T) {
        f32 => {
            // Use 23 random bits for the mantissa, and the rest for the exponent.
            // If all 41 bits are zero, generate additional random bits, until a
            // set bit is found, or 126 bits have been generated.
            const rand = r.int(u64);
            var rand_lz = @clz(rand);
            if (rand_lz >= 41) {
                @branchHint(.unlikely);
                rand_lz = 41 + @clz(r.int(u64));
                if (rand_lz == 41 + 64) {
                    @branchHint(.unlikely);
                    // It is astronomically unlikely to reach this point.
                    rand_lz += @clz(r.int(u32) | 0x7FF);
                }
            }
            const mantissa: u23 = @truncate(rand);
            const exponent = @as(u32, 126 - rand_lz) << 23;
            return @bitCast(exponent | mantissa);
        },
        f64 => {
            // Use 52 random bits for the mantissa, and the rest for the exponent.
            // If all 12 bits are zero, generate additional random bits, until a
            // set bit is found, or 1022 bits have been generated.
            const rand = r.int(u64);
            var rand_lz: u64 = @clz(rand);
            if (rand_lz >= 12) {
                rand_lz = 12;
                while (true) {
                    // It is astronomically unlikely for this loop to execute more than once.
                    const addl_rand_lz = @clz(r.int(u64));
                    rand_lz += addl_rand_lz;
                    if (addl_rand_lz != 64) {
                        @branchHint(.likely);
                        break;
                    }
                    if (rand_lz >= 1022) {
                        rand_lz = 1022;
                        break;
                    }
                }
            }
            const mantissa = rand & 0xFFFFFFFFFFFFF;
            const exponent = (1022 - rand_lz) << 52;
            return @bitCast(exponent | mantissa);
        },
        else => @compileError("unknown floating point type"),
    }
}

/// Return a floating point value normally distributed with mean = 0, stddev = 1.
///
/// To use different parameters, use: floatNorm(...) * desiredStddev + desiredMean.
pub fn floatNorm(r: Random, comptime T: type) T {
    const value = ziggurat.next_f64(r, ziggurat.NormDist);
    switch (T) {
        f32 => return @floatCast(value),
        f64 => return value,
        else => @compileError("unknown floating point type"),
    }
}

/// Return an exponentially distributed float with a rate parameter of 1.
///
/// To use a different rate parameter, use: floatExp(...) / desiredRate.
pub fn floatExp(r: Random, comptime T: type) T {
    const value = ziggurat.next_f64(r, ziggurat.ExpDist);
    switch (T) {
        f32 => return @floatCast(value),
        f64 => return value,
        else => @compileError("unknown floating point type"),
    }
}

/// Shuffle a slice into a random order.
///
/// Note that this will not yield consistent results across all targets
/// due to dependence on the representation of `usize` as an index.
/// See `shuffleWithIndex` for further commentary.
pub inline fn shuffle(r: Random, comptime T: type, buf: []T) void {
    r.shuffleWithIndex(T, buf, usize);
}

/// Shuffle a slice into a random order, using an index of a
/// specified type to maintain distribution across targets.
/// Asserts the index type can represent `buf.len`.
///
/// Indexes into the slice are generated using the specified `Index`
/// type, which determines distribution properties. This allows for
/// results to be independent of `usize` representation.
///
/// Prefer `shuffle` if this isn't important.
///
/// See `intRangeLessThan`, which this function uses,
/// for commentary on the runtime of this function.
pub fn shuffleWithIndex(r: Random, comptime T: type, buf: []T, comptime Index: type) void {
    const MinInt = MinArrayIndex(Index);
    if (buf.len < 2) {
        return;
    }

    // `i <= j < max <= maxInt(MinInt)`
    const max: MinInt = @intCast(buf.len);
    var i: MinInt = 0;
    while (i < max - 1) : (i += 1) {
        const j: MinInt = @intCast(r.intRangeLessThan(Index, i, max));
        mem.swap(T, &buf[i], &buf[j]);
    }
}

/// Randomly selects an index into `proportions`, where the likelihood of each
/// index is weighted by that proportion.
/// It is more likely for the index of the last proportion to be returned
/// than the index of the first proportion in the slice, and vice versa.
///
/// This is useful for selecting an item from a slice where weights are not equal.
/// `T` must be a numeric type capable of holding the sum of `proportions`.
pub fn weightedIndex(r: Random, comptime T: type, proportions: []const T) usize {
    // This implementation works by summing the proportions and picking a
    // random point in [0, sum).  We then loop over the proportions,
    // accumulating until our accumulator is greater than the random point.

    const sum = s: {
        var sum: T = 0;
        for (proportions) |v| sum += v;
        break :s sum;
    };

    const point = switch (@typeInfo(T)) {
        .int => |int_info| switch (int_info.signedness) {
            .signed => r.intRangeLessThan(T, 0, sum),
            .unsigned => r.uintLessThan(T, sum),
        },
        // take care that imprecision doesn't lead to a value slightly greater than sum
        .float => @min(r.float(T) * sum, sum - std.math.floatEps(T)),
        else => @compileError("weightedIndex does not support proportions of type " ++
            @typeName(T)),
    };

    assert(point < sum);

    var accumulator: T = 0;
    for (proportions, 0..) |p, index| {
        accumulator += p;
        if (point < accumulator) return index;
    } else unreachable;
}

/// Convert a random integer 0 <= random_int <= maxValue(T),
/// into an integer 0 <= result < less_than.
/// This function introduces a minor bias.
pub fn limitRangeBiased(comptime T: type, random_int: T, less_than: T) T {
    comptime assert(@typeInfo(T).int.signedness == .unsigned);
    const bits = @typeInfo(T).int.bits;

    // adapted from:
    //   http://www.pcg-random.org/posts/bounded-rands.html
    //   "Integer Multiplication (Biased)"
    const m = math.mulWide(T, random_int, less_than);
    return @intCast(m >> bits);
}

/// Returns the smallest of `Index` and `usize`.
fn MinArrayIndex(comptime Index: type) type {
    const index_info = @typeInfo(Index).int;
    assert(index_info.signedness == .unsigned);
    return if (index_info.bits >= @typeInfo(usize).int.bits) usize else Index;
}

test {
    std.testing.refAllDecls(@This());
    _ = @import("Random/test.zig");
}